

Lecture Notes in Artificial Intelligence 5081
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Deepak Kapur (Ed.)

Computer
Mathematics
8th Asian Symposium, ASCM 2007
Singapore, December 15-17, 2007
Revised and Invited Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editor

Deepak Kapur
University of New Mexico, Department of Computer Science
Albuquerque, NM 87131-0001, USA
E-mail: kapur@cs.unm.edu

Library of Congress Control Number: 2008935385

CR Subject Classification (1998): I.2.2, I.1-2, F.4.1, G.2, I.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-87826-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87826-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12524266 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the Eighth Asian Symposium on Com-
puter Mathematics (ASCM 2007), which was held at the Grand Plaza Park
Hotel City Hall, Singapore, December 15–17, 2007. Previous ASCM meetings
were held in Beijing, China (1995), Kobe, Japan (1996), Lanzhou, China (1998),
Chiang Mai, Thailand (2000), Matsuyama, Japan (2001), Beijing, China (2003),
and Seoul, Korea (2005).

Amongst 65 submissions by authors from 20 mostly Asian countries, the
Program Committee selected 23 regular papers and 13 posters for presentation
at the symposium. The presentations and papers went through another round of
reviewing after the symposium, and 22 regular papers and five short papers on
posters were selected for the proceedings. The international Program Committee
of ASCM 2007 had strong Asian participation, and the reviewing process was
aided by numerous reviewers from around the world. I am very grateful to the
Program Committee members and the reviewers for their work in evaluating the
submissions before and after the conference.

In addition to contributed papers, ASCM 2007 had three invited talks—
by Rida Farouki on computational geometry, by Xiaoyun Wang on cryptology,
and by Georges Gonthier on a computer proof of the celebrated Four Color
Theorem. I would like to thank the speakers for their excellent talks. A pa-
per by Prof. Farouki and his coauthors is included in the proceedings. Prof.
Wang’s research activities and publications can be found at her home page
http://www.infosec.sdu.edu.cn/2person wangxiaoyun2.htm. Details about
Dr. Gunthier’s computerized proof of the four color theorem can be found by
visiting his home page http://research.microsoft.com/∼gonthier.

It is my hope that ASCM continues to provide a forum for participants, espe-
cially from Asia, to present original research, to learn about new developments,
and to exchange ideas and views on doing mathematics with computers.

ASCM 2007 was organized by the School of Computing of the National Uni-
versity of Singapore, and supported by the Lee Foundation, Kim Seng Holdings,
and the Institute of Systems Science, Beijing, China. I thank Eng-Wee Chionh,
who served as the General Chair, and the staff of the School of Computing of
the National University of Singapore. Finally, I am grateful to Stephan Falke for
his help in preparing this volume.

June 2008 Deepak Kapur

Conference Organization

Program Chair

Deepak Kapur University of New Mexico, USA

Program Committee

Manindra Agarwal IIT Kanpur, India
Leonid Bokut Sobolev Institute, Russia
Shang-Ching Chou Wichita State University, USA
Falai Chen University of Science and Technology of China, China
Guoting Chen University of Lille I, France
Eng-Wee Chionh National University of Singapore, Singapore
Andreas Dolzmann University of Passau, Germany
Ding-Zhu Du University of Texas at Dallas, USA
Xiao-Shan Gao Chinese Academy of Sciences, China
Shuhong Gao Clemson University, USA
Keith Geddes University of Waterloo, Canada
Vladimir Gerdt Joint Institute for Nuclear Research, Russia
Hoon Hong North Carolina State University, USA
Jieh Hsiang National Taiwan University, Taiwan
Tetsuo Ida University of Tsukuba, Japan
Seok-Jin Kang Seoul National University, Korea
Yonggu Kim Chonnam National University, Korea
Wen-shin Lee University of Antwerp, Belgium
Ziming Li Chinese Academy of Sciences, China
Miroslaw Majewski NYIT Abu Dhabi, United Arab Emirates
Matu-Tarow Noda Ehime Campus Information Services, Japan
Tobias Nipkow Technical University of Munich, Germany
Hoang Xuan Phu Academy of Science and Technology, Vietnam
Raja Natarajan Tata Institute of Fundamental Research, India
Meera Sitharam University of Florida, USA
Lim Yohanes Stefanus University of Indonesia, Indonesia
Nobuki Takayama Kobe University, Japan
Toby Walsh National ICT, Australia
Dongming Wang Beihang University, China and CNRS, France
Chaoping Xing National University of Singapore, Singapore
Lu Yang East China Normal University, China
Kazuhiro Yokoyama Rikkyo University, Japan
Jianmin Zheng Nanyang Technological University, Singapore

VIII Organization

Conference Chairs

Eng-Wee Chionh National University of Singapore, Singapore
Huaxiong Wang Nanyang Technological University, Singapore

Publicity Chair

Dingkang Wang Chinese Academy of Sciences, China

Local Organizing Committee

Secretariat Stefanie Ng, Judy Ng
Web, CMT Zaini Bin Mohammad
Finance Lay Khim Chng, Noraiszah Hamzah, Rachel Goh
CD, Abstracts Alexia Leong
Web Registration Philip Lim
Audio-visual Bernard Tay, Mohamad Nazri Bin Sulaiman,

Chin Ming Chow

External Reviewers

John Abbott
Alkiviadis Akritas
Amir Amiraslani
Hirokazu Anai
Saugata Basu
Anna Bigatti
Peter Borwein
François Boulier
Jacek Chrzaszcz
Xavier Dahan
Jiansong Deng
Rida Farouki
Mitsushi Fujimoto
Laureano González Vega
Benjamin Gregoire
Markus Hitz
Fangjian Huang
Dorothy Kucar
Alexander Boris Levin
Yongbin Li
Bao Liu
Igor Markov
Marc Moreno Maza
A. S. Vasudeva Murthy
Masayuki Noro
Wei Pan

Pavel Pech
John Perry
Gerhard Pfister
Krishna Sankaranarayana
Eric Schost
Wolfgang Schreiner
Naresh Sharma
G. Sivakumar
K. V. Subrahmanyam
Laurent Théry
Vlad Timofte
Michel Toulouse
Ping-Sing Tsai
Regina Tyshkevich
Luca Vigano
Dingkang Wang
Wenping Wang
Xingmao Wang
Joab Winkler
Min Wu
Yuzhen Xie
Pingkun Yan
Noson Yanofsky
Alberto Zanoni
Zhengbing Zeng

Table of Contents

Algorithms and Implementations

Computing the Minkowski Value of the Exponential Function over a
Complex Disk . 1

Hyeong In Choi, Rida T. Farouki, Chang Yong Han, and
Hwan Pyo Moon

Unconstrained Parametric Minimization of a Polynomial: Approximate
and Exact . 22

S. Liang and D.J. Jeffrey

The Nearest Real Polynomial with a Real Multiple Zero in a Given
Real Interval . 32

Hiroshi Sekigawa

Practical and Theoretical Issues for the Computation of Generalized
Critical Values of a Polynomial Mapping . 42

Mohab Safey El Din

Which Symmetric Homogeneous Polynomials Can Be Proved Positive
Semi-definite by Difference Substitution Method? . 57

Liangyu Chen and Zhenbing Zeng

Basis-Independent Polynomial Division Algorithm Applied to Division
in Lagrange and Bernstein Basis . 72

Manfred Minimair

Computing the Greatest Common Divisor of Polynomials Using the
Comrade Matrix . 87

Nor’aini Aris and Shamsatun Nahar Ahmad

Efficient Algorithms for Computing Nœther Normalization 97
Amir Hashemi

Stability of GPBiCG AR Method Based on Minimization of Associate
Residual . 108

Moe Thuthu and Seiji Fujino

Evaluation of a Java Computer Algebra System . 121
Heinz Kredel

A New Property of Hamming Graphs and Mesh of d-ary Trees 139
Alain Bretto, Cerasela Jaulin, Luc Gillibert, and Bernard Laget

X Table of Contents

Numerical Methods and Applications

An Interpolation Method That Minimizes an Energy Integral of
Fractional Order . 151

H. Gunawan, F. Pranolo, and E. Rusyaman

Solving Biomechanical Model Using Third-Order Runge-Kutta
Methods . 163

R.R. Ahmad, A.S. Rambely, and L.H. Lim

An Efficient Fourth Order Implicit Runge-Kutta Algorithm for Second
Order Systems . 169

Basem S. Attili

Laplace Equation Inside a Cylinder: Computational Analysis and
Asymptotic Behavior of the Solution . 179

Suvra Sarkar and Sougata Patra

A Method and Its Implementation for Constructing Bäcklund
Transformations to Nonlinear Evolution Equations 188

Zhibin Li, Yinping Liu, and Haifeng Qian

On the Invariant Properties of Hyperbolic Bivariate Third-Order
Linear Partial Differential Operators . 199

Ekaterina Shemyakova and Franz Winkler

Symbolic Solution to Magnetohydrodynamic Hiemenz Flow in Porous
Media . 213

Seripah Awang Kechil and Ishak Hashim

Local Similarity Solutions for Laminar Boundary Layer Flow along a
Moving Cylinder in a Parallel Stream . 224

Anuar Ishak, Roslinda Nazar, and Ioan Pop

Elimination: Triangular Forms, Resultants, Equation
Solving

An Algorithm for Transforming Regular Chain into Normal Chain 236
Banghe Li and Dingkang Wang

A Modified Van der Waerden Algorithm to Decompose Algebraic
Varieties and Zero-Dimensional Radical Ideals . 246

Jia Li and Xiao-Shan Gao

Regular Decompositions . 263
Guillaume Moroz

Floating-Point Gröbner Basis Computation with Ill-conditionedness
Estimation . 278

Tateaki Sasaki and Fujio Kako

Table of Contents XI

The Maximality of the Dixon Matrix on Corner-Cut Monomial
Supports . 293

Eng-Wee Chionh

Properties of Ascending Chains for Partial Difference Polynomial
Systems . 307

Gui-Lin Zhang and Xiao-Shan Gao

Cryptology

Some Mathematical Problems in Cryptanalysis . 322
Xiaoyun Wang

A Reduction Attack on Algebraic Surface Public-Key Cryptosystems . . . 323
Maki Iwami

Computational Logic

The Four Colour Theorem: Engineering of a Formal Proof 333
Georges Gonthier

On the Computation of Elimination Ideals of Boolean Polynomial
Rings . 334

Yosuke Sato, Akira Nagai, and Shutaro Inoue

Computer Search for Large Sets of Idempotent Quasigroups 349
Feifei Ma and Jian Zhang

Author Index . 359

Computing the Minkowski Value of the

Exponential Function over a Complex Disk

Hyeong In Choi1, Rida T. Farouki2, Chang Yong Han3, and Hwan Pyo Moon1

1 Department of Mathematics, Seoul National University,
Seoul 151–747, South Korea

2 Department of Mechanical and Aeronautical Engineering,
University of California, Davis, CA 95616, USA

3 School of Electronics and Information, Kyung Hee University,
Yongin–si, Gyeonggi–do 446–701, South Korea

hichoi@snu.ac.kr, farouki@ucdavis.edu, cyhan@khu.ac.kr, hpmoon@snu.ac.kr

Abstract. Basic concepts, results, and applications of the Minkowski
geometric algebra of complex sets are briefly reviewed, and preliminary
ideas on its extension to evaluating transcendental functions of complex
sets are discussed. Specifically, the Minkowski value of the exponential
function over a disk in the complex plane is considered, as the limit of
partial–sum sets defined by the monomial or Horner evaluation schemes.

1 Introduction

The Minkowski sum and Minkowski product of complex–number sets1 A, B are
defined by

A ⊕ B = { a + b | a ∈ A and b ∈ B } ,

A ⊗ B = { a × b | a ∈ A and b ∈ B } . (1)

For “simple” operand sets A and B — e.g., circular disks (see Figure 1) — these
expressions admit exact boundary evaluation [14]. For more general complex
sets, bounded by piecewise–analytic curves, algorithms are available [10,11,13] to
approximate Minkowski sum and product boundaries to any specified precision.
Minkowski sums and products are commutative and associative, but products do
not distribute over sums: we have, instead, the subdistributive inclusion relation

(A ⊕ B) ⊗ C ⊆ (A ⊗ C) ⊕ (B ⊗ C) . (2)

The sum and product (1) are basic operations in the Minkowski algebra of
complex sets, which is concerned [14] with complex–number sets generated by
certain combinations of complex values that vary independently over given set
operands. Specifying the negation and reciprocal of set B by

−B = {−b | b ∈ B } and B−1 = {b−1 | b ∈ B }
1 Following prior use [13,14] we denote real values by italic characters, complex values

by bold characters, and sets of complex values by upper–case calligraphic characters.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 1–21, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 H.I. Choi et al.

Re

Im

Fig. 1. Left: visualization of the Minkowski product of two circles as the region bounded
by a Cartesian oval (a quartic algebraic curve) through a Monte Carlo experiment using
products of randomly–sampled points on the circles. Right: Cartesian ovals realized as
products of one circle with points of the other, and vice–versa. See [14] for more details,
and [15] for a general theory accommodating the Minkowski product of N > 2 circles.

one can also introduce the “simple” Minkowski difference and division operations
A � B = A ⊕ −B and A � B = A ⊗ B−1. Note, however, that � and � are not
inverses of ⊕ and ⊗. Another type of Minkowski difference is defined [19,34] by

A � B = (A′ ⊕ −B)′ , (3)

where C′ denotes the complement of set C. This difference (also known [19] as a
Minkowski decomposition) does satisfy (A ⊕ B) � B = A — although it is not
always true that (A�B)⊕B = A. The Minkowski sum in (1) and the difference
(3) can be interpreted, respectively, as set unions and intersections

A ⊕ B =
⋃

b∈B
A + b and A � B =

⋂

b∈B
A − b

of the translates A+ b and A−b of set A by the points of B and −B. This can
be verified using de Morgan’s laws

(A ∪ B)′ = A′ ∩ B′ and (A ∩ B)′ = A′ ∪ B′ (4)

— i.e., set unions and intersections are exchanged under complementation.
Consider, for example, the case of circular disks. Taking A = D(cA, rA) and

B = D(cB , rB) where D(c, r) denotes the disk with center c and radius r, we have
A⊕B = D(cA +cB, rA + rB). Then A�B = A⊕−B gives D(cA −cB, rA + rB),
so that (A � B) ⊕ B = D(cA, rA + 2rB)
= A if rB
= 0. On the other hand, the
definition (3) gives A�B = D(cA − cB, rA − rB) when rA ≥ rB , and the empty
set ∅ when rA < rB . Hence, definition (3) yields (A�B)⊕B = A when rA ≥ rB ,
but (A � B) ⊕ B = ∅ when rA < rB.

By analogy with (3), an alternative Minkowski division can be defined by

A � B = (A′ ⊗ B−1)′ . (5)

Computing the Minkowski Value of the Exponential Function 3

This satisfies (A⊗B)�B = A, but (A�B)⊗B = A does not always hold. The
Minkowski product in (1) and the division (5) can be interpreted, respectively,
as set unions and intersections

A ⊗ B =
⋃

b∈B
Ab and A � B =

⋂

b∈B
Ab−1

of the scalings/rotations Ab and Ab−1 of set A by the points of B and B−1 —
again, one can invoke de Morgan’s laws (4) to verify this.

The Minkowski algebra can be usefully extended in many ways. For example,
replacing the binary operations a+b and a×b by an analytic bivariate function
f(a,b) we obtain the “implicitly–defined” set denoted [13] by A©f B. Whereas
the sum A⊕B and product A⊗B can be regarded as unions of translations and
scalings/rotations of set A by the points of set B (or vice–versa), respectively, the
implicitly–defined set A©f B can be regarded as a union of conformal mappings
of one set, dependent upon the points of the other set [13].

Fig. 2. A single loop of the ovals of Cassini, a quartic algebraic curve (left), specifies
the Minkowski square root of a circular disk (right) that does not include the origin [5]
— this result is also generalized in [5] to identify the nth Minkowski roots of a disk

Unary set operations can also be introduced. For example, the nth Minkowski
power ⊗nA and nth Minkowski root ⊗1/nA of a set A are specified by

⊗nA = { z1z2 · · · zn | zi ∈ A for i = 1, . . . , n } ,

{ z1z2 · · · zn | zi ∈ ⊗1/nA for i = 1, . . . , n } = A ,

and are also amenable to closed–form evaluations [5,15] if A is a circular disk —
see Figure 2. Another important unary operation corresponds to evaluation of a
function f(X) with a set argument X . This is, however, a more subtle problem
than in the case of a scalar argument. Since Minkowski sums and products do
not obey the distributive law, a specific algorithm for the evaluation (describing
the exact order of its arithmetic operations) must be specified to uniquely define
f(X). The case of a polynomial f with a circular disk X as argument was studied

4 H.I. Choi et al.

-1.5 -1 -0.5 0.5

-0.5

0.5

1

1.5

2 4 6 8

-4

-2

2

4

6

Fig. 3. Envelope curves (boundary supersets) for the Minkowski Horner values of two
cubic polynomials over circular disks in the complex plane: see [6] for complete details

in [6], in the context of both the monomial and Horner evaluation algorithms
— see Figure 3 for some examples.

The solution of elementary equations in the Minkowski algebra, involving an
unknown set X and given “simple” coefficient sets A,B . . ., was considered in [7].
For circular disks A and B, sufficient–and–necessary conditions were specified
for the existence of a solution X (see Figure 4) to the linear equation

A ⊗ X = B , (6)

and the nature of the solution was determined. The generalization of (6) to the
case where X is replaced by the nth Minkowski power ⊗nX was also treated, and
the extension to linear systems in several unknown sets was discussed.

The Minkowski algebra of sets in C has diverse applications and connections.
It may be regarded as the natural extension of (real) interval arithmetic [29,30]
to complex–number sets. Its two–dimensional nature, however, endows it with
a richer geometrical content. It offers an elegant “shape operator” language for

0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 4. Left: solution of the equation A ⊗ X = B when A, B are disks (shown dotted)
— see [7]. The solution X is the region bounded by the inner loop of the Cartesian
oval shown as a solid locus. Right: as x traces the inner loop of the Cartesian oval, the
envelope of the one–parameter family of disks A ⊗ {x} yields the boundary of disk B.

Computing the Minkowski Value of the Exponential Function 5

planar domains, with connections to direct and inverse wavefront constructions
in geometric optics [3,4,14], stability analysis of dynamic systems with uncertain
parameters [8,9,12], and image analysis and mathematical morphology [32,33].
The Minkowski sum is a basic operation [20,26,28] in Euclidean geometry, with a
natural generalization to Rn for n ≥ 3, and important applications in geometric
design, computer graphics, path planning, and related fields [18,22,23,24,25,27].

We are interested here in extending the repertoire of Minkowski set operations
to accommodate transcendental functions of complex sets — in particular, the
Minkowski exponential of a circular disk A in the complex plane. This is defined
by evaluating the Taylor series of the exponential function, up to the n–th order
term, using the Minkowski monomial or Horner algorithms described in [6], and
considering the proper limit as n → ∞ of the infinite sequence of complex sets
thus defined. The resulting complex sets, expm(A) and exph(A), differ because
of the disparate ways in which complex values z ∈ A are used in their generation:
whereas the truncated series for expm(A) employs 1

2n(n+1) independent z values
(each monomial term is evaluated independently), that for exph(A) incurs only
n values of z in the “nested multiplication” process. Furthermore, expm(A) and
exph(A) both differ from the simple image of A under the exponential map
z → ez, which we denote here by eA.

2 Random–Coefficient Differential Equation

We illustrate here one possible application of the Minkowski exponential, in the
set–valued solution to a differential equation whose coefficients exhibit random
variations over prescribed sets. By “random variations” we do not mean that
the coefficients are stochastic functions of the independent variable (e.g., time),
but rather that they are regarded like quantum variables, i.e., each time they are
invoked they exhibit independent random values, in accordance with a definite
probability distribution over some prescribed domain.

Consider the complex function z(t) = x(t) + i y(t) satisfying the linear first–
order differential

dz
dt

= kz , (7)

where k = λ+ iμ is a complex value. For initial conditions z(0) = z0 = x0 + iy0,
the formal solution is

z(t) = z0 ekt . (8)

Equation (7) is equivalent to a system of coupled first–order equations
[

x′

y′

]
=
[

λ −μ
μ λ

] [
x
y

]

for the real functions x(t) and y(t), specified by a skew–symmetric matrix. With
A =
√

x2
0 + y2

0 and cosφ = x0/A, sin φ = y0/A these functions have the form

x(t) = A eλt cos(φ + μt) , y(t) = A eλt sin(φ + μt) .

6 H.I. Choi et al.

Now in (8), we consider the value of the exponential with complex argument kt
to be defined by

ekt = lim
n→∞

[
1 + kt +

(kt)2

2!
+ · · · +

(kt)n

n!

]
, (9)

where the partial Taylor series, up to the n–th order term, is to be evaluated by
a particular algorithm.

We now consider the solutions to (7) when the parameter k is interpreted as
a random variable, confined to a disk A in the complex plane. There are several
possible models for such an interpretation. The simplest is to consider complex
numbers k ∈ A selected a priori that are regarded as deterministic, constant
values during the integration of (7). Then we simply have a family of solutions
of the form (8) with k varying over A. A perhaps more–interesting model is
to consider k exhibiting some kind of random variation with t, confined to the
domain A. This is in the spirit of the so–called stochastic differential equations
[1,16,17,31] used to model price fluctuations in financial markets.

Our interest is in a third, and even more general, interpretation — namely k
is interpreted as a kind of “quantum variable” that yields a random value2 from
within A whenever it is measured or used (quantum variables have inherently
indeterminate values, and only the relative probabilities for the outcome of their
measurements are known). Equation (7) then has a set–valued solution, that can
be described in terms of the Minkowski exponential as

{z0} ⊗ expm(A t) or {z0} ⊗ exph(A t) ,

according to whether the monomial or Horner algorithm is used in evaluating
the partial Taylor series in (9).

3 Minkowski Exponential of a Real Interval

Before studying the Minkowski exponentials of complex sets, it is instructive to
consider first the simpler case of real intervals. According to the usual rules of
real interval arithmetic [29,30] we have

[a, b] + [c, d] = [a + c, b + d] ,

[a, b] − [c, d] = [a − d, b − c] ,

[a, b] × [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] ,

[a, b] ÷ [c, d] = [a, b] × [1/d, 1/c] . (10)

Division is usually restricted to intervals with 0
∈ [c, d]. Sums and products of
intervals are commutative and associative, but products do not distribute over
sums — instead, we have the sub–distributive inclusion relation

[a, b] × ([c, d] + [e, f]) ⊆ ([a, b] × [c, d]) + ([a, b] × [e, f]) .

Note also that the interval operators −, ÷ are not inverses to +, ×.
2 As a default, we assume that k has a uniform probability distribution over A — but

any probability density function could, in principle, be used.

Computing the Minkowski Value of the Exponential Function 7

Consider a non–degenerate interval I = [a, b]. To compute the Minkowski
exponential of I, it is convenient to identify four distinct cases:

case (1) : 0 ≤ a < b ,

case (2) : a < 0 < b and |a| < b ,

case (3) : a < 0 < b and |a| > b ,

case (4) : a < b ≤ 0 . (11)

The exponential ex of a real variable x is defined by the infinite series

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · ,

convergent for all x. To uniquely define a value for the Minkowski exponential
of a set argument, we interpret it as the limit of a sequence of sets obtained by
evaluating the partial sums of the above infinite series using a specific algorithm
— since, in general, the algebra of sets does not satisfy the distributive law. We
consider two algorithms: monomial evaluation, in which the terms of the series
are independently evaluated and then summed, and Horner evaluation, in which
“nested multiplication” is used to evaluate the partial sums.

Consider the monomial form of the Minkowski exponential of I, denoted
expm(I). We need to compute the Minkowski powers of I, defined by

⊗kI = [a, b] × · · · × [a, b]︸ ︷︷ ︸
k times

,

with ⊗0I = [1, 1]. The following results can be easily verified by induction

case (1) : ⊗kI = [ak , bk] for k = 1, 2, 3, 4, . . . ,

case (2) : ⊗kI = [abk−1 , bk] for k = 1, 2, 3, 4, . . . ,

case (3) : ⊗kI =

{
[ak , ak−1b] for k = 1, 3, . . .

[ak−1b , ak] for k = 2, 4, . . .
,

case (4) : ⊗kI =

{
[ak , bk] for k = 1, 3, . . .

[bk , ak] for k = 2, 4, . . .
,

using the product rule in (10) with [c, d] = [a, b]. The Minkowski monomial
value for the exponential of the real interval I, defined by

expm(I) =
∞∑

k=0

1
k!

⊗kI ,

8 H.I. Choi et al.

is an (infinite) weighted sum of the Minkowski powers ⊗kI. Using the addition
rule from (10) and taking the appropriate limits, we deduce that

case (1) : expm(I) = [ea , eb] ,

case (2) : expm(I) = [1 +
a

b
(eb − 1) , eb] ,

case (3) : expm(I) = [1 + sinh a +
b

a
(cosh a − 1) ,

b

a
sinh a + cosha] ,

case (4) : expm(I) = [sinh a + cosh b , sinh b + cosha] .

These expressions agree in the three transitional cases a = 0, |a| = |b|, b = 0.
On the other hand, the Horner value exph(I) for the Minkowski exponential

of the interval I is defined as the limit

exph(I) = lim
k→∞

Hk ,

where the intervals Hk are “partial Horner sums” generated by the recursion

Hr = (Hr−1 ⊗ I) ⊕
{

1
(k − r)!

}
for r = 1, . . . , k

with H0 = {1/k!}. The k–th Horner sum can be equivalently expressed as

Hk =
{

t1 · · · tk
k!

+
t2 · · · tk
(k − 1)!

+ · · · + tk−1tk
2!

+ tk + 1
∣∣∣∣ t1, . . . , tk ∈ I

}
.

For case (1), the lower and upper bounds of Hk are evidently realized by choosing
t1 = · · · = tk = a and t1 = · · · = tk = b, respectively. In case (2), the upper
bound is again obtained with t1 = · · · = tk = b, and the lower bound is achieved
with t1, . . . , tk−1 = b and tk = a. Hence, we have

case (1) : Hk =

[
k∑

r=0

ar

r!
,

k∑

r=0

br

r!

]
,

case (2) : Hk =

[
1 +

a

b

k∑

r=1

br

r!
,

k∑

r=0

br

r!

]
.

Case (3) is more subtle, since there is no simple universal rule that identifies the
combinations of t1, . . . , tk values generating the lower and upper bounds of Hk —
the choice depends on the relative magnitudes of a and b. For example, with k = 7
and [a, b] = [−1.2, 0.7] the lower bound is generated by t1, . . . , t6 = b and t7 = a,
and the upper bound by t1 = · · · = t7 = b, as in case (2). However, for k = 6 and
[a, b] = [−5.2, 0.3] the lower bound is obtained with t1, . . . , t6 = b, a, a, a, a, a,
and the upper bound with t1, . . . , t6 = b, b, a, a, a, a. For the case k = 7 and

Computing the Minkowski Value of the Exponential Function 9

[a, b] = [−3.6, 1.7] the upper and lower bounds are generated by the choices
t1, . . . , t6 = b, b, b, b, a, a, a and b, b, b, b, b, a, a respectively. The same phenomenon
is observed in case (4) — the numerical values of a, b must be known in order to
identify the lower/upper bounds for each Horner sum Hk.

Cases (3) and (4) indicate that, in general, it is not possible to express each
Horner sum Hk symbolically in terms of a and b without knowing their precise
magnitudes. This complicates determining the Horner value for the Minkowski
exponential of an interval, as compared to the monomial value discussed above.
However, in the “simple” cases (1) and (2), taking the limit as k → ∞ gives

case (1) : exph(I) = [ea , eb] ,

case (2) : exph(I) = [1 +
a

b
(eb − 1) , eb] .

Comparing the Minkowski monomial and Horner values expm(I) and exph(I)
with the image of the interval I under the exponential map, defined by

eI = { et | t ∈ I } = [ea , eb] ,

we have the following inclusion relations

case (1) : eI = exph(I) = expm(I) ,

case (2) : eI ⊂ exph(I) = expm(I) .

Also, eI ⊂ expm(I) for the Minkowski monomial value in cases (3) and (4).
In computing the Minkowski sum or product of complex disks A and B with

centers a and b, it is convenient to transform the operands to certain “canonical”
positions [14]. For the Minkowski sum this amounts to moving the disk centers
to the origin by the translations −a and −b, while for the Minkowski product
one moves the centers to the point 1 of the real axis by the complex scalings
1/a and 1/b. The Minkowski sum or product of the original operands is then
obtained from that of the transformed operands by the translation a + b or the
scaling/rotation defined by multiplying with ab, respectively.

In general, however, the Minkowski exponential of a set does not admit such
transformations to and from canonical position. We show this in the case (1) of
a real interval I = [a, b] with center c = 1

2 (a + b) and half–width w = 1
2 (b − a)

for the monomial Minkowski exponential. Translating by −c gives the interval
Ĩ = [−w, +w] centered on the origin, and we might try to recover expm(I) from
expm(Ĩ) by multiplying with ec, since the exponential function satisfies ecex =
ec+x. In case (1) we have I = [a, b] with 0 ≤ a < b, and expm(I) = [ea, eb]. On
the other hand, we find that expm(Ĩ) = [2 − ew, ew] and hence

ec expm(Ĩ) = [2 e
1
2 (a+b) − eb, eb] .

Clearly, ec expm(Ĩ)
= expm(I) since a < b by assumption.

10 H.I. Choi et al.

Similarly, for two real intervals I1 = [a1, b1] and I2 = [a2, b2] one can readily
verify in case (1) that

expm(I1 + I2) = expm(I1) expm(I2) , exph(I1 + I2) = exph(I1) exph(I2) ,

but for cases (2)–(4) we have

expm(I1 + I2)
= expm(I1) expm(I2) , exph(I1 + I2)
= exph(I1) exph(I2) .

4 Exponential Image of a Circular Disk

Consider the image eA of the complex–plane disk A with center c and radius r
under the exponential map z → ez. It will be of interest to compare eA with the
Minkowski exponentials expm(A) and exph(A). Without loss of generality, we
may use the canonical disk

Ã = A � {c}
with center at the origin and radius r. The images of A and Ã are related by

eA = {ec} ⊗ eÃ

— i.e., eA is a scaling/rotation of eÃ by the complex number ec. The boundary
of the disk with center 0 and radius r has the parameterization

z(θ) = r eiθ = r cos θ + i r sin θ

for 0 ≤ θ < 2π, and under the exponential map this curve becomes

ez(θ) = er cos θ [cos(r sin θ) + i sin(r sin θ)] . (12)

Since Re(ez(−θ)) = Re(ez(θ)) and Im(ez(−θ)) = − Im(ez(θ)), it is symmetric about
the real axis. It has the two points

ez(0) = er and ez(π) = e−r ,

on the positive real axis. These are the only points on the real axis if r < π, but
for r ≥ π there are additional real points — they correspond to the values

θ = ± sin−1 kπ

r
for k = 1, . . . , n

where n = �r/π�. Similarly, ez(θ) has points on the imaginary axis only when
r > 1

2π — they correspond to the values

θ = ± sin−1 (k − 1
2)π

r
for k = 1, . . . , n − 1 .

Examples of these curves are shown in Figures 5 and 6. The number of nested
loops increases with r, and the boundary of eA is defined by the outermost loop,
which (when r > π) corresponds to restricting (12) to the domain

− sin−1 π

r
≤ θ ≤ + sin−1 π

r
.

Computing the Minkowski Value of the Exponential Function 11

Fig. 5. The curve (12) with r = 1
4π, 1

2π 3
4π (left to right). The dots indicate the points

1 and e on the real axis. For r < 1
2π the curve lies in the right half–plane; for r = 1

2π
it is tangent to the imaginary axis; and for r > 1

2π it crosses into the left half–plane.

Fig. 6. The curve defined by (12) for r = π (left), r = 3
2π (center), and r = 6π (right).

Note that, for clarity, these three plots employ different scales.

5 Monomial Minkowski Exponential

For a compact simply–connected domain A in the complex plane, the monomial
Minkowski exponential may be formally expressed as

expm(A) =
∞⊕

k=0

1
k!

⊗kA ,

which can (in some sense) be interpreted as the limit of the partial sums

Sn =
n⊕

k=0

1
k!

⊗kA . (13)

A well–established means of defining the limit of an infinite sequence of sets
is the Painlevé–Kuratowski convergence. For a given sequence of sets {Cn} in a
Banach space X , the Painlevé–Kuratowski limit is defined by

lim
n→∞ Cn = {x ∈ X | lim

n→∞ dist(x, Cn) = 0 } ,

12 H.I. Choi et al.

dist(x, Cn) being the distance from x to Cn, measured in the metric induced by
the norm of the Banach space X — see [2] and references therein for a detailed
formulation of the Painlevé–Kuratowski convergence. A rigorous definition of the
monomial Minkowski exponential of a complex set may be formulated in terms
of the Painlevé–Kuratowski convergence as follows.

Definition 1. For a compact simply–connected set A in the complex plane, the
monomial Minkowski exponential expm(A) is the Painlevé–Kuratowski limit of
the sequence of sets {Sn} specified by the partial sums (13).

The following proposition describes methods for identifying points in the mono-
mial Minkowski exponential of a complex set A.

Proposition 2. Let A be a compact simply–connected domain in the complex
plane, let Mk = 1/k! ⊗kA be the kth monomial term,3 and let Sn be the partial
sum (13). Then, for any complex number x, the following are equivalent:

(a) The complex number x is contained in expm(A).
(b) A sequence of complex numbers {zk} with zk ∈ Mk exists, such that

x =
∞∑

k=0

zk .

(c) A doubly–indexed sequence of complex numbers {wjk} exists, such that wjk ∈
A for 1 ≤ j ≤ k < ∞ and

x =
∞∑

k=0

⎛

⎝ 1
k!

k∏

j=1

wjk

⎞

⎠ . (14)

Proof: (a) ⇒ (b) For a compact domain A, every partial sum Sn is also compact,
since it is a Minkowski sum of a finite number of scaled Minkowski powers of A.
Hence, from every Sn we can choose a point sn for which the distance from x to
Sn is realized — i.e.,

dist(x,Sn) = |x − sn| for some sn ∈ Sn .

Since x is contained in the Painlevé–Kuratowski limit of {Sn}, we have

lim
n→∞ |x − sn| = lim

n→∞ dist(x,Sn) = 0 .

Thus, x is the limit point of the sequence {sn}. Now let zk = sk − sk−1 for k ≥ 1
with z0 = 1. Then we have

sn =
n∑

k=0

zk and
∞∑

k=0

zk = lim
n→∞ sn = x .

3 Note here that M0 = {1}. Also, the k = 0 term of the sum (14) has the value 1.

Computing the Minkowski Value of the Exponential Function 13

The fact that zk ∈ Mk follows immediately by noting that sk = sk−1 + zk and
Sk = Sk−1 ⊕ Mk.

(b) ⇒ (c) Let {zk} be the complex sequence for which condition (b) holds.
Since zk ∈ Mk, the kth Minkowski power ⊗kA contains k! zk. Hence, for each k,
we can choose a k–tuple (w1k, · · · ,wkk) from A such that

zk =
1
k!

k∏

j=1

wjk .

Condition (c) holds for such a choice of the doubly–indexed sequence {wjk}.
(c) ⇒ (a) Let {wjk} be the doubly–indexed sequence chosen from A for which

condition (c) holds. Then the partial sum given by

sn =
n∑

k=0

⎛

⎝ 1
k!

k∏

j=1

wjk

⎞

⎠

is contained in Sn, and the point x can be expressed as

x = sn +
∞∑

k=n+1

⎛

⎝ 1
k!

k∏

j=1

wjk

⎞

⎠ .

We can estimate the distance from x to Sn as follows:

dist(x,Sn) ≤ |x − sn| ≤
∞∑

k=n+1

∣∣∣∣∣∣
1
k!

k∏

j=1

wjk

∣∣∣∣∣∣
≤

∞∑

k=n+1

Ck

k!
,

the constant C being an upper bound on the norm of the elements in A. The
last expression in the above inequalities converges to 0 as n → ∞. Hence, x
is contained in the Painlevé–Kuratowski limit of {Sn}, which is the monomial
Minkowski exponential of A.

In order to elucidate the nature of the monomial Minkowski exponential of a
given compact set A, we focus on its boundary ∂ expm(A). We note first that
the monomial Minkowski exponential is a compact set whenever the given set
A is compact. The fact that ∂ expm(A) is a closed set follows directly from
the definition of the Painlevé–Kuratowski limit, and its boundedness is easily
deduced from condition (c) of Proposition 2. The following theorem gives a
characterization of the boundary points of expm(A).

Theorem 3. Suppose the complex number x lies on the boundary ∂ expm(A) of
the monomial Minkowski exponential of a compact set A in the complex plane.
Then each point of the doubly–indexed sequence {wjk} that generates x through
(14) lies on the boundary ∂A of A, provided that 0
∈ ∂A.

Proof: Let {wjk} be a doubly–indexed sequence generating the boundary point
x by (14). When 0
∈ ∂A, the origin must lie in the interior or exterior of A.

14 H.I. Choi et al.

Assume first that 0 is in the exterior of A. Now if an element wj0k0 of the
sequence {wjk} lies in the interior of A, we can choose a positive real number ε
such that the complex number wj0k0 +t eiθ is contained in A for all t ∈ [0, ε] and
θ ∈ [0, 2π). Now let {w̃jk} be the doubly–indexed sequence obtained from {wjk}
by replacing wj0k0 by wj0k0 + t eiθ. Then the monomial Minkowski exponential
expm(A) contains the complex number

x̃ =
∞∑

k=0

⎛

⎝ 1
k!

k∏

j=1

w̃jk

⎞

⎠ . (15)

This complex number x̃ can be expressed as

x̃ = x + t eiθ 1
k0!

∏

1≤j≤k0
j 	=j0

wjk0 .

Now the modulus
c =

1
k0!

∏

1≤j≤k0
j 	=j0

|wjk0 |

is a positive real number since A does not contain the origin. So x̃ describes a
circular disk centered at x of radius cε as we vary t from 0 to ε for θ ∈ [0, 2π).
But this contradicts the assumption that x ∈ ∂ expm(A).

We now assume that 0 is in the interior of A. If none of the elements wjk is
zero, we can apply the same argument as in the preceding case. Otherwise, let
k0 be the smallest index such that

k0∏

j=1

wjk0 = 0 .

We choose a positive real number ε such that the disk centered at the origin
of radius ε is contained in A. Then we construct the doubly–indexed sequence
{w̃nk} from {wjk} by replacing zeros in {w1k0 , · · · ,wk0k0} with t eiθ for t ∈ [0, ε]
and θ ∈ [0, 2π). Then the complex numbers x̃ given by (15) form a neighborhood
of x as t varies in [0, ε]. So we have a contradiction.

Consider now the case where A is a circular disk in the complex plane with
center c and radius r. In computing expm(A) it would be convenient if we could
transform A to some “canonical” position. For the Minkowski sum of two disks,
the canonical positions correspond to placing their centers at the origin through
appropriate translations. For the Minkowski product of two disks, it is convenient
to place their centers at the number 1 on the real axis through a complex scaling
by the reciprocal of each center. For the Minkowski exponential of a disk, it
seems natural to place the center at the origin rather than at the real number
1, and consider the translated disk

Ã = A − c = A ⊕ {−c} .

Computing the Minkowski Value of the Exponential Function 15

Unfortunately, there is no obvious relationship between expm(A) and expm(Ã)
— in general, we have

expm(A)
= {ec} ⊗ expm(Ã) , (16)

as already noted in Section 3 for the case of real intervals.

Remark 4. When A is a circular disk with center 0, computing expm(A) is a
trivial task. Let A be the closed disk D(0, r) with r > 0. The k–th Minkowski
power ⊗kA then becomes the circular disk D(0, rk), and the k–th monomial
term Mk is D(0, rk/k!). Since the Minkowski sum of a finite number of circular
disks centered at 0 is again a circular disk centered at 0, whose radius equals the
sum of the individual radii, the partial sum Sn in (13) is given by

Sn = {1} ⊕
n⊕

k=1

D

(
0,

rk

k!

)
= D

(
1,

n∑

k=1

rk

k!

)
.

So {Sn} is a sequence of disks with common center 1 and strictly increasing radii.
Hence, the monomial Minkowski exponential expm(A) is also a disk centered at
1, whose radius is the limit radius of Sn. Hence, we conclude that

expm(D(0, r)) = D(1, er − 1) .

The relation (16) is a special instance of the more general inequality

expm(A ⊕ B)
= expm(A) ⊗ expm(B) , (17)

corresponding to a choice of the singleton set {c} for B. It may be possible to
derive inclusion relations between expm(A ⊕ B) and expm(A) ⊗ expm(B). The
latter expression corresponds to

expm(A) ⊗ expm(B) =

[∞⊕

k=0

1
k!

⊗kA
]

⊗
[∞⊕

k=0

1
k!

⊗kB
]

,

and by the definition of the monomial Minkowski exponential, we have

expm(A ⊕ B) =
∞⊕

k=0

1
k!

⊗k (A ⊕ B) .

Now using the sub–distributive law (2) one can show that

⊗2(A ⊕ B) ⊆ (⊗2A) ⊕ 2(A ⊗ B) ⊕ (⊗2B) ,

and more generally, for each k ≥ 2,

⊗k(A ⊕ B) ⊆
k⊕

j=0

(
k

j

)
(⊗k−jA) ⊗ (⊗jB) .

16 H.I. Choi et al.

Substituting into the previous expression, we obtain

expm(A ⊕ B) ⊆
∞⊕

k=0

1
k!

⎡

⎣
k⊕

j=0

(
k

j

)
(⊗k−jA) ⊗ (⊗jB)

⎤

⎦ .

Written out explicitly, the right–hand side is

expm(A ⊕ B) ⊆ {1} ⊕ (A ⊕ B) ⊕ 1
2!

[(⊗2A) ⊕ 2(A ⊗ B) ⊕ (⊗2B)]

⊕ 1
3!

[(⊗3A) ⊕ 3((⊗2A) ⊗ B) ⊕ 3(A ⊗ (⊗2B)) ⊕ (⊗3B)] ⊕ · · ·

6 Convergence of Partial–Sum Approximations

In most cases, computing the exact boundary of expm(A) is a very difficult task
— even for a simple domain A. However, if we allow a small tolerance, the partial
sum Sn can be a good approximation to expm(A) for sufficiently large n. For
such approximations, we need to know how fast Sn converges to expm(A). The
most common measure of the proximity of two sets is the Hausdorff distance
[21]. The Hausdorff distance dH(X, Y) between two compact sets X and Y in a
metric space is defined by

dH(X, Y) = max{sup
x∈X

inf
y∈Y

dist(x,y), sup
y∈Y

inf
x∈X

dist(x,y)} ,

where dist(,) is the distance in the metric space. The following proposition gives
an estimate of the Hausdorff distance between expm(A) and the partial sum Sn.

Proposition 5. For a compact simply–connected domain A in the complex
plane, let C be the maximum modulus of all points in A. Then the Hausdorff
distance between expm(A) and the partial sum Sn is bounded by

dH(expm(A),Sn) <
Cn+1

(n + 1)!
eC . (18)

Proof: For any point x in expm(A), let {wjk} be the doubly–indexed sequence
of points in A such that

x =
∞∑

k=0

⎛

⎝ 1
k!

k∏

j=1

wjk

⎞

⎠ .

We separate the above summation into sn and rn, where

sn =
n∑

k=0

⎛

⎝ 1
k!

k∏

j=1

wjk

⎞

⎠ , rn =
∞∑

k=n+1

⎛

⎝ 1
k!

k∏

j=1

wjk

⎞

⎠ .

Computing the Minkowski Value of the Exponential Function 17

Then sn is contained in Sn. Thus, we have

inf
y∈Sn

dist(x,y) ≤ dist(x, sn) = |rn| .

Since x is an arbitrary point in expm(A), we also have

sup
x∈expm(A)

inf
y∈Sn

dist(x,y) ≤ |rn| .

On the other hand, for any point sn in Sn, we can construct a point x in expm(A)
with x = sn + rn by choosing arbitrary numbers wjk in A for k ≥ n + 1. Thus,
we can derive

sup
y∈Sn

inf
x∈expm(A)

dist(x,y) ≤ |rn| .

Therefore, the Hausdorff distance dH(expm(A),Sn) is bounded by the modulus
of the remainder term rn, which can be estimated as

|rn| ≤
∞∑

k=n+1

(
1
k!

Ck

)
≤ Cn+1

(n + 1)!
eC .

This completes the proof.

7 Monte Carlo Experiments

Since a closed–form derivation seems quite difficult, we consider here the use of
Monte Carlo experiments for evaluating the monomial Minkowski exponential
of a special circular disk. Let A be the circular disk of radius r centered at 1,
which is the canonical position for the Minkowski product [14,15]. We further
assume A does not contain the origin — i.e., r < 1. The maximum modulus of
all points in A is therefore less than 2.

To compute the monomial Minkowski exponential expm(A) with a tolerance
10−3, it suffices to evaluate the partial sum Sn with n = 10, since from (18) the
Hausdorff distance between expm(A) and S10 is bounded by

dH(expm(A),S10) <
211

11!
e2 ≈ 3.79 × 10−4 .

Now to generate a sampling of points in the partial sum Sn by the Monte Carlo
method, we need to evaluate the expression

1 +
n∑

k=1

1
k!

k∏

j=1

zjk

for many different sets of randomly–chosen points zjk ∈ A. We are interested
mainly in the boundary of Sn, and a necessary condition for the above expression
to yield a point on this boundary is that all the points zjk are selected from the

18 H.I. Choi et al.

boundary of A. The plot on the left in Figure 7 shows the point cluster generated
by the Monte Carlo method in this manner, for the partial sum S10 when A is
the circular disk centered at 1 of radius 0.9. However, it is not easy to discern
the boundary of S10 from this Monte Carlo result, since the point cluster is very
sparse near the boundary. In order to gain a better impression of the boundary,
we need a more structured method for selecting the points zjk from ∂A.

−1 0 1 2 3 4 5 6 7 8
−4

−3

−2

−1

0

1

2

3

4

−1 0 1 2 3 4 5 6 7 8
−4

−3

−2

−1

0

1

2

3

4

Fig. 7. Left: Unstructured Monte Carlo experiment for the partial sum S10 when A is
the circular disk of radius 0.9 centered at 1. The closed curve is the boundary of the
exponential image of A. Right: Result of structured Monte Carlo simulation for S10.

The partial sum Sn is obtained by translating the successive Minkowski sum
of n monomial terms from M1 to Mn by 1. Thus, any boundary point of Sn is
generated by

1 +
n∑

k=1

1
k!

wk , (19)

where wk is a boundary point of the k–th Minkowski power ⊗kA. It is known
[15] that the boundary of the Minkowski power of a circular disk is a subset of
the image of ∂A under the conformal map z �→ zk. In other words, the boundary
point wk of ⊗kA must be the k–th power of a single point on ∂A. Therefore, a
superset of ∂(⊗kA) can be parameterized by

wk(θk) = (1 + reiθk)k .

From the above observation, a more restrictive necessary condition for wk to
generate a boundary point of ∂Sn can be formulated as follows. Since the partial
sum Sn is essentially the Minkowski sum of n monomial terms, the boundary
point is generated by the n–tuple of points {w1, · · · ,wn} where the Gauss maps
of ∂(⊗kA) at wk are matched. Hence, the outward normal vectors of the curves
wk(θ), given by

− iw′
k(θk) = k r eiθk(1 + reiθk)k−1 ,

Computing the Minkowski Value of the Exponential Function 19

should have the same argument. Therefore, for a freely–chosen θ1, the angles θk

for k ≥ 2 should satisfy

θk + (k − 1) arg(1 + reiθk) = θ1 + 2mπ

for some integer m. The above equation can be re–formulated as

r sin θk

1 + r cos θk
= tan

(
θ1 − θk + 2mπ

k − 1

)
.

By re–arranging, after multiplying both sides by 1 + r cos θk, we obtain

r

[
sin θk − cos θk tan

(
θ1 − θk + 2mπ

k − 1

)]
= tan

(
θ1 − θk + 2mπ

k − 1

)
.

This can be simplified by multiplying both sides with cos(θ1−θk +2mπ)/(k−1),
yielding

−r sin
(

θ1 − kθk + 2mπ

k − 1

)
= sin

(
θ1 − θk + 2mπ

k − 1

)
. (20)

Although this equation does not admit an explicit closed–form solution for θk, in
the context of the Monte Carlo experiment we can apply an iterative numerical
procedure, such as the Newton–Raphson method. The overall scheme for the
structured Monte Carlo method using equation (20) is as follows:

1. choose an arbitrary angle θ1;
2. solve equation (20) numerically for 2 ≤ k ≤ n;
3. generate a point on (the superset of) ∂Sn using equation (19).

The result of the structured Monte Carlo simulation is illustrated on the right in
Fig. 7. The structured Monte Carlo simulation clearly gives a better impression
of the monomial Minkowski exponential than the unstructured method.

8 Closure

Some preliminary results concerning the problem of computing the Minkowski
exponential of a circular disk in the complex plane have been discussed. Two
types of set exponentials were considered, based upon the monomial and Horner
evaluation schemes. A basic difficulty, compared to computation of Minkowski
sums, products, powers, and roots of circular disks, is the lack of a universal
transformation of the circular disk operand to a “simple” canonical configuration.
For the simpler case of the Minkowski exponentials of real intervals, complete
closed–form expressions were derived in the monomial case, but the Horner case
proved more difficult, and closed–form expressions were derived only for cases
(1) and (2) of the four categories (11). For disks in the complex plane, Monte
Carlo experiments were used to gain insight into basic features of the monomial
Minkowski exponential, but the analysis and algorithmic boundary evaluation
of Minkowski exponentials remain challenging open problems.

20 H.I. Choi et al.

Acknowledgement

H. P. Moon was supported by the BK21 project of the Ministry of Education,
Korea.

References

1. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New
York (1974)

2. Cabot, A., Seeger, A.: Multivalued exponential analysis. Part I: Maclaurin expo-
nentials. Set–Valued Analysis 14, 347–379 (2006)

3. Farouki, R.T., Chastang, J.–C.A.: Curves and surfaces in geometrical optics. In:
Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods in Computer Aided Ge-
ometric Design II, pp. 239–260. Academic Press, London (1992)

4. Farouki, R.T., Chastang, J.–C.A.: Exact equations of “simple” wavefronts. Op-
tik 91, 109–121 (1992)

5. Farouki, R.T., Gu, W., Moon, H.P.: Minkowski roots of complex sets. In: Geometric
Modeling and Processing 2000, pp. 287–300. IEEE Computer Society Press, Los
Alamitos (2000)

6. Farouki, R.T., Han, C.Y.: Computation of Minkowski values of polynomials over
complex sets. Numerical Algorithms 36, 13–29 (2004)

7. Farouki, R.T., Han, C.Y.: Solution of elementary equations in the Minkowski geo-
metric algebra of complex sets. Advances in Computational Mathematics 22, 301–
323 (2005)

8. Farouki, R.T., Han, C.Y.: Robust plotting of generalized lemniscates. Applied Nu-
merical Mathematics 51, 257–272 (2005)

9. Farouki, R.T., Han, C.Y.: Root neighborhoods, generalized lemniscates, and robust
stability of dynamic systems. Applicable Algebra in Engineering, Communication,
and Computing 18, 169–189 (2007)

10. Farouki, R.T., Han, C.Y., Hass, J.: Boundary evaluation algorithms for Minkowski
combinations of complex sets using topological analysis of implicit curves. Numer-
ical Algorithms 40, 251–283 (2007)

11. Farouki, R.T., Hass, J.: Evaluating the boundary and covering degree of planar
Minkowski sums and other geometrical convolutions. Journal of Computational
and Applied Mathematics 209, 246–266 (2007)

12. Farouki, R.T., Moon, H.P.: Minkowski geometric algebra and the stability of char-
acteristic polynomials. In: Hege, H.–C., Polthier, K. (eds.) Visualization in Math-
ematics 3, pp. 163–188. Springer, Heidelberg (2003)

13. Farouki, R.T., Moon, H.P., Ravani, B.: Algorithms for Minkowski products and
implicitly–defined complex sets. Advances in Computational Mathematics 13, 199–
229 (2000)

14. Farouki, R.T., Moon, H.P., Ravani, B.: Minkowski geometric algebra of complex
sets. Geometriae Dedicata 85, 283–315 (2001)

15. Farouki, R.T., Pottmann, H.: Exact Minkowski products of N complex disks. Re-
liable Computing 8, 43–66 (2002)

16. Friedman, A.: Stochastic Differential Equations and Applications. Academic Press,
New York (1975)

17. Gihman, I.I., Skorohod, A.V.: Stochastic Differential Equations (translated by
K. Wickwire). Springer, Berlin (1972)

Computing the Minkowski Value of the Exponential Function 21

18. Ghosh, P.K.: A mathematical model for shape description using Minkowski oper-
ators. Computer Vision, Graphics, and Image Processing 44, 239–269 (1988)

19. Ghosh, P.K.: A unified computational framework for Minkowski operations. Com-
puters & Graphics 17, 357–378 (1993)

20. Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche, und Isoperimetrie. Springer,
Berlin (1957)

21. Hausdorff, F.: Set Theory (translated by J. R. Aumann et al.), Chelsea, New York
(1957)

22. Kaul, A.: Computing Minkowski sums, PhD Thesis, Columbia University (1993)
23. Kaul, A., Farouki, R.T.: Computing Minkowski sums of plane curves. International

Journal of Computational Geometry and Applications 5, 413–432 (1995)
24. Kaul, A., Rossignac, J.R.: Solid interpolating deformations: Construction and an-

imation of PIP. Computers and Graphics 16, 107–115 (1992)
25. Lozano–Pérez, T., Wesley, M.A.: An algorithm for planning collision–free paths

among polyhedral obstacles. Communications of the ACM 22, 560–570 (1979)
26. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)
27. Middleditch, A.E.: Applications of a vector sum operator. Computer Aided De-

sign 20, 183–188 (1988)
28. Minkowski, H.: Volumen und Oberfläche. Mathematische Annalen 57, 447–495

(1903)
29. Moore, R.E.: Interval Analysis. Prentice–Hall, Englewood Cliffs (1966)
30. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia

(1979)
31. Øksendal, B.K.: Stochastic Differential Equations: An Introduction with Applica-

tions. Springer, Berlin (1998)
32. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London

(1982)
33. Serra, J.: Introduction to mathematical morphology. Computer Vision, Graphics,

and Image Processing 35, 283–305 (1986)
34. Tomiczková, S.: Minkowski Operations and Their Applications, PhD Thesis, Plzeň,

Czech Republic (2006)

Unconstrained Parametric Minimization of

a Polynomial: Approximate and Exact

S. Liang and D.J. Jeffrey

Department of Applied Mathematics,
The University of Western Ontario, London, Ont. N6A 5B7 Canada

Abstract. We consider a monic polynomial of even degree with sym-
bolic coefficients. We give a method for obtaining an expression in the
coefficients (regarded as parameters) that is a lower bound on the value of
the polynomial, or in other words a lower bound on the minimum of the
polynomial. The main advantage of accepting a bound on the minimum,
in contrast to an expression for the exact minimum, is that the algebraic
form of the result can be kept relatively simple. Any exact result for a
minimum will necessarily require parametric representations of algebraic
numbers, whereas the bounds given here are much simpler. In principle,
the method given here could be used to find the exact minimum, but only
for low degree polynomials is this feasible; we illustrate this for a quartic
polynomial. As an application, we compute rectifying transformations
for integrals of trigonometric functions. The transformations require the
construction of polynomials that are positive definite.

1 Introduction

Let n ∈ Z be even, and let Pn ∈ R[a0, . . . , an−1][x] be monic in x, that is,

Pn(x) = xn +
n−1∑

j=0

ajx
j . (1)

A function L(aj) of the coefficients is required that is a lower bound for Pn(x),
i.e., L must satisfy

(∀x)Pn(x) ≥ L(aj) . (2)

The problem definition does not require that the equality in (2) be realized. If
that is also the case, then L is the minimum of Pn:

min
x∈R

Pn(x) = Lmin(aj) . (3)

Thus Lmin obeys

(∀x)Pn(x) ≥ Lmin(aj) , (∃x)Pn(x) = Lmin(aj) , (4)

and Lmin ≥ L, where L satisfies (2).

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 22–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Unconstrained Parametric Minimization of a Polynomial 23

The problem described has connections to several areas of research, includ-
ing parametric optimization, quantifier elimination and polynomial positive-
definiteness. Much of the work on parametric optimization concerns topics such
as the continuity of the optimum as a function of the parameters, or the perfor-
mance of numerical methods; see, for example, [1, 2, 4]. The following problem
was considered in [1].

min{λ2x2 − 2λ(1 − λ)x | x ≥ 0} .

The unique solution for the unconstrained problem is found for λ
= 0 to be
−(1−λ)2, which is realised when x takes the value x̂ = (1−λ)/λ. The constrained
problem has this solution only for λ ∈ (0, 1) and ceases to be smooth at the end
points. The unconstrained problem is covered in this paper, although the focus
is on higher degree polynomials.

There has been a large amount of work on a related problem in quantifier elim-
ination. For n = 4, Lazard [7] and Hong [5] have solved the following problem.
Find a condition on the coefficients p, q, r that is equivalent to the statement

(∀x)x4 + px2 + qx + r ≥ 0 . (5)

The solution they found is
[
[256r3 − 128p2r2 + 144pq2r + 16p4r − 27q4 − 4p3q2 ≥ 0 ∧ 8pr − 9q2 − 2p3 ≤ 0]

∨
[27q2 + 8p3 ≥ 0 ∧ 8pr − 9q2 − 2p3 ≥ 0]

]∧
r ≥ 0 . (6)

It is clear that a solution of (3) gives a solution of this problem, since (5) is
equivalent to the statement r = −min(x4+px2+qx |x). The question of positive
definiteness is also related to the current problem. Ulrich and Watson [8] studied
this problem for a quartic polynomial, except that they included the constraint
x ∈ R+, the positive real line.

Previous work has all been directed towards calculations of the minimum of
a given polynomial. For n = 2, the minimum of a quadratic polynomial is a
standard result.

min
x∈R

P2(x) = min(x2 + a1x + a0) = a0 − 1
4a2

1 , (7)

and this is attained when x = − 1
2a1. For larger n, there is only the standard

calculus approach, which uses the roots of the derivative. This, however, is only
possible for numerical coefficients, because there is no way of knowing which root
corresponds to the minimum. Floating-point approximations to the minimum are
easily obtained.

If all of the coefficients of P2n are purely numerical, rather than symbolic,
then there are many ways to find the minimum. For example, Maple has the
command minimize and the command Optimize:-Minimize. An example is

24 S. Liang and D.J. Jeffrey

>minimize(x^4 - 5*x^2 + 4*x ,x);
RootOf(2 _Z^3 - 5 _Z - 2,index=3)^4

- 5*RootOf(2 _Z^3 - 5 _Z - 2,index=3)^2
+ 4 RootOf(2 _Z^3 - 5 _Z - 2,index=3)

which can be simplified by Maple to

-(5/2) RootOf(2 _Z^3-5 _Z-2,index=3)^2
- 3 RootOf(2 _Z^3-5 _Z-2,index=3)

The second argument of RootOf selects, using an index, the appropriate root of
the polynomial.

2 Algorithm for Lower Bound

We now describe a recursive algorithm. In principle, it could be used to find
the minimum of a parametric polynomial, and indeed we show this below for a
quartic polynomial, but the main intended use is for a simpler lower bound.

Consider a polynomial given by (1). We shall express the lower bound to Pn

in terms of that for Pn−2. This recursive descent terminates at P2, for which we
have the result (7). The descent is based on the following obvious lemma.

Lemma 1. If f(x) and g(x) are two even-degree monic polynomials, then

inf(f(x) + g(x)) ≥ inf f(x) + inf g(x).

Proof: The equality holds when the minima of f and g are realized at the same
critical point x. �
It is convenient at this point to acknowledge the evenness of the degree by
changing notation to consider P2n. We apply the lemma by using the standard
transformation x = y−a2n−1/(2na2n) to remove the term in x2n−1 from P2n(x).
Thus we have the depressed polynomial

P2n(y) = a2ny2n +
2n−2∑

j=0

bjy
j. (8)

Now, we split P2n into two even-degree polynomials with positive leading
coefficients by introducing a parameter kn satisfying kn > 0 and kn > b2n−2.

P2n = [a2ny2n + (b2n−2 − kn)y2n−2] + [kny2n−2 + . . .] = P
(1)
2n + P

(2)
2n .

The minimum of P
(1)
2n is

inf(P (1)
2n) = − (n − 1)n−1(kn − b2n−2)n

nnan−1
2n

which is obtained at the critical points y2 = (n − 1)(kn − b2n−2)/(na2n).

Unconstrained Parametric Minimization of a Polynomial 25

Since deg P
(2)
2n = 2n − 2 < 2n, we can recursively compute the minimum and

critical point of P
(2)
2n . Let the minimum and the corresponding critical point of

P
(2)
2n be M(kn−1, . . . , k2), N(kn−1, . . . , k2) respectively. Then by Lemma 1, we

have

inf(P2n) ≥ − (n − 1)n−1(kn − b2n−2)n

nnan−1
2n

+ M.

Therefore, a lower bound for P2n is obtained after recursion in terms of pa-
rameters kn, kn−1, . . . , k2. If it is possible to choose the ki such that

(n − 1)(kn − b2n−2)
na2n

= N(ki−1, . . . , k2)2 , (9)

at each recursive step, then an expression for the minimum would be obtained.
However, our main aim is to find lower bounds in as simple a form as possible,
hence we choose each ki to satisfy the requirements in a simple way.

Since the ki will appear in the denominators of expressions, it is not a good
idea to allow a value that is too small. Otherwise there will be computational dif-
ficulties. A simple choice is ki = 1, but this may not satisfy 1 > b2i−2. Therefore
we have chosen to use

ki = max(1, 1 + b2i−2) .

Table 1. A Maple procedure for computing a lower bound on the value of an even-
degree monic polynomial

BoundPoly:=proc(p,var)
local m,n,a,b,c,redpoly,y,p1,p2,tp,par:
Input: An even degree (parametric) polynomial p(var).
Output: a lower bound.
m:=degree(p,var):
if m=0 or modp(m,2)<>0 then error("Bad input") end if;
a:=coeff(p,var,m):
b:=coeff(p,var,m-1):
c:=coeff(p,var,m-2):
if m=2 then

(4*a*c-b^2)/(4*a):
else

n:=m/2:
redpoly:=expand(subs(var=y-b/(m*a),p)):
b:=coeff(redpoly,y,m-2):
par:=max(1,b+1):
p1:=a*y^m+(b-par)*y^(m-2):
p2:=expand(redpoly-p1):
tp:=(n-1)^(n-1)*(par-b)^n/(n^n*a^(n-1)):
simplify(-tp+BoundPoly(p2,y)):

end if
end proc:

26 S. Liang and D.J. Jeffrey

This has the advantage that the simple value 1 will be selected whenever pos-
sible, and otherwise the more complicated value is used. Several other choices
were tried, for example, ki = 1 + |b2i−2|. In either case, the results are much
simpler if Maple is able to determine the sign of b2i−2, otherwise many unsim-
plified expressions can appear in the output. The first choice gives the following
algorithm, which is presented in Maple syntax in table 1.

3 Examples

Consider the polynomial

p = x6 + x4 − 2x3 + x2 − ax + 2 . (10)

Applying the algorithm, we obtain

30299/17280− (3/20)a − (1/5)a2 . (11)

Using a numerical routine, we can choose varying values of a and compute the
numerical minimum and then plot this against the bound just obtained. This is
shown in figure 1.

a
K2 K1 0 1 2 3

min(p)

K1

1

2

Fig. 1. The minimum of the polynomial p(x) defined in (10) and the lower bound given
in (11). The solid line is the exact minimum. Although very close, the two curves never
touch.

For different values of a, this example shows both very close bounds and very
poor ones. Thus for the case a = 1.5, the lower bound on the minimum is 1.078,
whereas the true minimum is 1.085. In contrast, for large a, the exact minimum
is asymptotically −5(a/6)6/5, whereas the bound is −a2/5, so the bound can

Unconstrained Parametric Minimization of a Polynomial 27

be arbitrarily bad in that case. However, as shown in the next section, in the
intended application, there is no need for a close bound; any bound will be just
as good.

A second example shows a different form of output. We assume the condition
a > 0 and look for a lower bound on

p = x6 + x4 − 2x3 + (1 + a)x2 − x + 2 . (12)

With the Maple assumption assume(a,positive), we obtain the bound

24251 + 24628a

3456(5 + 4a)
.

Notice that since a > 0, the denominator is never zero. We can quickly check
the accuracy of this bound by trying a numerical comparison. Thus for a = 10,
the bound takes the value 30059/17280 ≈ 1.7395, while the minimum value
is actually 1.9771. For large, positive, a the minimum is asymptotically 2 and
the bound is asymptotically 6157/3456 ≈ 1.78, so in this case the asymptotic
behaviour is good.

4 The Minimum of a Quartic Polynomial

Although the main implementation aims for a simple lower bound, it has already
been stated that the same approach can be used to find an minimum. We show
that this is so, but also show the more complicated form of the result, by deriving
an exact minimum for a quartic polynomial. As above, we need consider only a
depressed quartic.

Theorem 1: If the coefficient b1
= 0, the quartic polynomial

P4(x) = x4 + b2x
2 + b1x

has the minimum
inf P4 = b2k2 − 3

4k2
2 − 1

4b2
2 , (13)

where

k2 = s1/3 +
b2
2

9s1/3
+

b2

3
, (14)

s = 1
4b2

1 + 1
27b3

2 + 1
36

√
81b4

1 + 24b2
1b

3
2 . (15)

Moreover, the minimum of P4 is located at x = xm = − 1
2b1/k2.

Proof: As above, the polynomial P4 is split into two by introducing a parameter
k2 satisfying k2 > 0 and k2 > b2.

P4 = [y4 + (b2 − k2)y2] + [k2y
2 + b1y] = P

(1)
4 + P

(2)
4 .

28 S. Liang and D.J. Jeffrey

The minimum of P
(1)
4 is

inf(y4 + (b2 − k2)y2) = − 1
4 (k2 − b2)2 ,

given the restrictions on k2. The coordinate of this minimum obeys y2 = 1
2 (k2 −

b2). The minimum of P
(2)
4 is −b2

1/2, by (7), and therefore

inf(P4) ≥ −b2
1/(4k2) − 1

4 (k2 − b2)2 . (16)

Equating the coordinates of the two infima gives an equation for the value of
k2 at which the lower bound equals the minimum of P4.

k2 − b2

2
=
(

−b1

2k2

)2

.

This is equivalent to the cubic

k3
2 − b2k

2
2 − 1

2b2
1 = 0 , (17)

which equation can also be obtained by maximizing the right side of (16) di-
rectly. It is straightforward to show that (17) has a unique positive solution,
and furthermore it is always greater than b2, as was assumed at the start of the
derivation. Rewriting (17) in the form

1
2k2

2 − 1
2b2k2 = b12/(4k2) ,

allows the expression (16) to be transformed into the form given in the theorem
statement. �
Since (17) has a unique positive solution, its solution takes the form (14) given in
the theorem. For some values of the coefficients, the quantity s will be complex,
but if s1/3 is always evaluated as the principal value, then k2 given by (14) is
the real positive solution.

Theorem 2: For the case b1 = 0, the quartic polynomial

P4(x) = x4 + b2x
2 (18)

has the minimum
inf P4 = −max(0,−b2/2)2 ,

at the points x2
m = max(0,−b2/2).

Proof: By differentiation. �
Implementation. The discussion here is in the same spirit as the discussion in [3].
The following issues must be addressed by the implementer, taking into account
the facilities available in the particular CAS.

For a polynomial with numerical coefficients in the rational-number field Q,
the infima can be algebraic numbers of degrees 1, 2 or 3. If the formulae (13) and
(14) are used for substitution, the answer will always appear to be an algebraic

Unconstrained Parametric Minimization of a Polynomial 29

number of degree 3, and the simplification of such numbers into lower degree
forms cannot be relied on in some systems. Therefore, if it is accepted that the
system should return the simplest expressions possible, then the best strategy in
this case is not to use (14), but instead to solve the cubic equation (17) directly.
Even if simplicity is not an issue, roundoff error in the Cardano formula often
results in a small nonzero imaginary part in k2.

For symbolic coefficients, the main problem is the specialization problem [3].
Since Theorem 1 excludes b1 = 0, it is important to see what would happen if
the formulae (13) and (14) were returned to a user and later the user substituted
coefficients giving b1 = 0. Substituting b1 = 0 into (14) gives

k2 = 1
3 (b3

2)
1/3 + b2

2/3(b3
2)

1/3 + b2/3

For b2 > 0 this gives k2 = b2, while for b2 < 0 it simplifies to k2 = 0. For
b2 = 0, the system should report a divide by zero error. Thus for b2
= 0, (13)
and (14) work even for b1 = 0, although it should be noted that the position
of the minimum, −b1/2k2, will give a divide by zero error for all b2 < 0. It is
important to remember in this discussion that the mathematical properties of
(13) and (14). Thus, the fact that it is possible to obtain the correct result for
b1 = b2 = 0 by taking limits is not relevant; what is relevant is how a CAS will
manipulate the expressions.

An alternative implementation can use the fact that some CAS have functions
for representing one root of an equation directly. In particular, Maple has the
RootOf construction, but in order to specify the root uniquely, an interval must
be supplied that contains it. The left side of (17) is − 1

2b2
1 for k = 0, b2 and hence

the interval can start at max(0, b2). By direct calculation, the left side is positive
at |b2|+b2

1/6+1. An advantage of this approach is the fact that b1 = b2 = 0 is no
longer an exceptional case, at least for the value of the minimum: the position
still requires separate treatment.

5 Application to Integration

Let ψ, φ ∈ R[x, y] be polynomials over R, the field of real numbers. A rational
trigonometric function over R is a function of the form

T (sin z, cos z) =
ψ(sin z, cos z)
φ(sin z, cos z)

. (19)

The problem considered here is the integration of such a function with respect
to a real variable, in other words, to evaluate

∫
T (sinx, cosx) dx with x ∈ R.

The particular point of interest lies in the continuity properties of the expression
obtained for the integral. General discussions of the existence of discontinuities
in expressions for integrals have been given by [6] and [10].

A simple example shows the difficulty to be faced. The integral below was eval-
uated as shown by all the common computer algebra programs (Maple, Mathe-

matica and others); notice that the integral depends on a symbolic parameter a.

30 S. Liang and D.J. Jeffrey

U(x) =
(a cos4 x + 3 sin2 x cos2 x)

cos6 x + (a sin x cos2 x + sin3 x)2
, (20)

∫
U(x) dx = arctan(a tan x + tan3 x) . (21)

It is a simple calculation to see that the integrand U(x) is continuous at x = π/2,
with U(0) = 0, but the expression for the integral is discontinuous at the same
point, having a jump of π. We have

lim
x↑π/2

arctan(a tan x + tan3 x) − lim
x↓π/2

arctan(a tan x + tan3 x) = π .

The notion of a rectifying transformation was introduced in [6], and can be
applied to this situation.

The general problem is to rectify expressions of the form arctan [P (u)], where
P ∈ R[u], and without loss of generality is monic. Moreover, u = tan x, where x
is chosen according to the properties of the integrand. We note first the identity

arctanx − arctan y = arctan
x − y

1 + xy
+

{
sgn(y)π , for 1 + xy < 0 ,

0 , otherwise.
(22)

We shall use this in a formal sense, dropping the piecewise constant. The two
cases of P of even degree and P of odd degree are treated separately. For P of
even degree, we transform as follows.

arctanP (u) → arctanP (u) − arctan(1/k) → arctan
P − 1/k

1 + P/k
= arctan

kP − 1
k + P

.

The first step simply adds a constant to the result of the integration. The second
step uses formula (22), dropping the piecewise constant. The final expression will
now be continuous provided

∀u ∈ R, P (u) + k > 0 .

The problem, therefore, is to choose k so that this condition is satisfied. Notice
that since P (u) is even degree and monic, it will always be possible to satisfy
the condition, and the problem is to find an expression for k. Also note that in
the example, P contains a parameter, so a simple calculus exercise will not be
sufficient to determine k.

For P of odd degree, we transform as follows.

arctan(P (u)) → arctan(P (u)) − arctanu/k + arctanu/k − arctanu + x

→ arctan
P (u) − u/k

1 + P (u)u/k
+ arctan

u/k − u

1 + u2/k
+ x ,

= arctan
kP − u

k + uP
+ arctan

u − ku

k + u2
. (23)

The first step in the transformation uses the formal identity

arctanu = arctan(tan x) → x .

Unconstrained Parametric Minimization of a Polynomial 31

The second step combines the inverse tangents in pairs, again dropping the
piecewise constants. This will be a continuous expression provided

∀u ∈ R, k + uP (u) > 0 .

Since P has odd degree, uP has even degree, so again k exists. Our aim is
therefore to obtain an expression for k in each case.

For the specific integral example given in (21), we have that uP = u4 + au2,
and the above routine gives the lower bound k = −1/4 (max (1, a + 1) − a)2.
This value can now be used in (23).

References

1. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear parametric
optimization. Birkhäuser, Basel (1983)

2. Brosowski, B.: Parametric Optimization and Approximation. Birkhäuser, Basel
(1985)

3. Corless, R.M., Jeffrey, D.J.: Well, it isn’t quite that simple. SIGSAM Bulletin 26(3),
2–6 (1992)

4. Floudas, C.A., Pardalos, P.M.: Encyclopedia of Optimization. Kluwer Academic,
Dordrecht (2001)

5. Hong, H.: Simple solution formula construction in cylindrical algebraic decomposi-
tion based quantifier elimination. In: Wang, P.S. (ed.) Proceedings of ISSAC 1992,
pp. 177–188. ACM Press, New York (1992)

6. Jeffrey, D.J.: Integration to obtain expressions valid on domains of maximum ex-
tent. In: Bronstein, M. (ed.) Proceedings of ISSAC 1993, pp. 34–41. ACM Press,
New York (1993)

7. Lazard, D.: Quantifier elimination: optimal solution for two classical problems. J.
Symbolic Comp. 5, 261–266 (1988)

8. Ulrich, G., Watson, L.T.: Positivity conditions for quartic polynomials. SIAM J.
Sci. Computing 15, 528–544 (1994)

9. Jeffrey, D.J., Rich, A.D.: The evaluation of trigonometric integrals avoiding spuri-
ous discontinuities. ACM TOMS 20, 124–135 (1994)

10. Jeffrey, D.J.: The importance of being continuous. Mathematics Magazine 67, 294–
300 (1994)

The Nearest Real Polynomial with a Real

Multiple Zero in a Given Real Interval

Hiroshi Sekigawa

NTT Communication Science Laboratories
Nippon Telegraph and Telephone Corporation

3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan
sekigawa@theory.brl.ntt.co.jp

http://www.brl.ntt.co.jp/people/sekigawa/

Abstract. Given f ∈ R[x] and a closed real interval I , we provide a
rigorous method for finding a nearest polynomial with a real multiple
zero in I , that is, f̃ ∈ R[x] such that f̃ has a multiple zero in I and
‖f − f̃‖∞, the infinity norm of the vector of coefficients of f − f̃ , is
minimal. First, we prove that if a nearest polynomial f̃ exists, there is
a nearest polynomial g̃ ∈ R[x] such that the absolute value of every
coefficient of f − g̃ is ‖f − f̃‖∞ with at most one exceptional coefficient.
Using this property, we construct h ∈ R[x] such that a zero of h is a real
multiple zero α ∈ I of g̃. Furthermore, we give a rational function whose
value at α is ‖f − f̃‖∞.

1 Introduction

Problems on the locations of the zeros of a polynomial are very interesting and
important both in theory and practice. In many practical examples, the coef-
ficients of polynomials may contain errors because they are obtained through
measurement or can be specified only with finite precision. As described in [1],
problems as to how perturbations of such coefficients affect the location of zeros
have been treated in control theory, and Kharitonov’s theorem [2] and the edge
theorem [3] are landmark results.

For real polynomials, it is natural to consider only real perturbations since
in many practical examples, the errors are also real numbers. It is also natural
to consider only real zeros for many applications. Hence, it is important to
decide whether there exists a real multiple zero since it may become close real
zeros or complex zeros through perturbations of coefficients, however small those
perturbations may be. In particular, we consider the following type of problem.

Given f ∈ R[x] and a closed real interval I, find a nearest polynomial
f̃ ∈ R[x] in a weighted l∞-norm that has a multiple zero in I.

In this paper, the lp-norm of a polynomial is the p-norm of the vector of coeffi-
cients of the polynomial with respect to a given basis.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 32–41, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Nearest Real Polynomial with a Real Multiple Zero 33

A real univariate polynomial f(x) =
∑n

j=0 ajx
j has a real multiple zero at a

given point α if and only if
∑n

j=0 ajα
j =
∑n

j=1 jajα
j−1 = 0, and f(x) has a com-

plex zero at a given point β if and only if
∑n

j=0 aj Re βj =
∑n

j=0 aj Im βj = 0.
Regarding aj as variables, both systems of equations are of the form

∑n
j=0 ajγj =∑n

j=0 ajδj = 0 for given real numbers γj and δj . Thus, the decision methods as
to whether f(x) has a real multiple zero at α and as to whether f(x) has a
complex zero at β are closely related.

In control theory, the results in [4,5] are for finding the nearest polynomial
having a complex zero in a prescribed complex domain by searching within a
subset of the domain. (See also the textbook [6].)

In numerical analysis, finding the nearest polynomial to a given function un-
der a number of conditions has been studied in approximation theory. (See the
textbook [7], for example.) The Remez algorithm [8], which is an iterative al-
gorithm, can be used for such problems when we use the uniform norm as the
distance between two functions. For such optimization problems, theories on
normed linear spaces, especially duality theorems, are useful [9].

The proposed method in this paper belongs to the categories of symbolic or
symbolic-numeric algorithms. There are a lot of studies related to the above prob-
lem in these categories [10,1,11,12,13,14,15,16,17,18,19,20]. Theories on normed
linear spaces and duality are also used, for example, [10,13,15,19]. The problem
treated in [20] is closely related to the above problem. However, the authors
of [20] use the l2-norm while we use a weighted l∞-norm. Given f ∈ R[x], a
closed real interval I, and ε > 0, we can decide whether there exists g ∈ R[x]
such that g has a real multiple zero in I and ‖f − g‖∞ ≤ ε using the method
in [17]. However, we cannot compute the minimal ε such that there exists such a
polynomial g. For a given complex (or real) polynomial and locus, reference [11]
proposes a method to find the nearest polynomial in a weighted l2-norm that
has a zero in the locus. A similar problem for a real polynomial in a weighted
l∞-norm and a closed complex domain is treated in [16]. Although [16] treats
complex zeros, because of the above reason, we can use a similar method to
the one in [16] to solve the problem in this paper. Furthermore, we extend the
results of [16] as follows. First, we prove that a nearest polynomial exists when
the number of perturbed coefficients is more than one and I does not degenerate
to a point. Second, we give a simpler explicit formula for the distance between f
and a nearest polynomial f̃ , together with a necessary and sufficient condition
for the existence of f̃ when I consists of one point. We can obtain the latter
result through arguments on convex polygons. From these arguments, we can
naturally obtain the property that if a nearest polynomial exists, there is a near-
est polynomial g̃ such that the absolute value of every coefficient of f − g̃ is
‖f − g̃‖∞ with at most one exceptional coefficient.

The method in this paper is algebraic. We solve systems of algebraic equations
to obtain a nearest polynomial f̃ . We can represent exactly the coefficients of f̃ ,
the multiple zeros of f̃ in I, and ‖f − f̃‖∞ as algebraic numbers. However, to
obtain their numerical values, iteration or search methods are more efficient.

34 H. Sekigawa

The rest of this article is organized as follows. Section 2 describes the theo-
rems that support the proposed methods, whose details are explained in Sect. 3.
Section 4 concludes the paper by mentioning directions in which future work
might proceed.

2 Theoretical Background

2.1 Existence of a Nearest Polynomial

In this paper, we assume the following conditions.

Condition 1

1. f(x), e1(x), . . . , en(x) ∈ R[x] are given, the number of ei(x) is finite, and
e1(x)R + · · · + en(x)R ∼= Rn.

2. A closed real interval I is given and f(x) does not have a multiple zero in I.
3. The degrees of the polynomials in F = { f(x) +

∑n
i=1 ciei(x) | ci ∈ R } are

constant when I is not bounded.
4. A metric d on F is given such that the topology of F induced by d is the

ordinal topology of Rn. Here, we identify F with Rn through the map F �
f(x) +

∑n
i=1 ciei(x) �→ (c1, . . . , cn) ∈ Rn.

We consider the following problem.

Problem 1. Find f̃ ∈ F such that f̃ has a multiple zero in I and d(f, f̃) is
minimal.

Clearly, there is no solution to Problem 1 if there is no polynomial in F having
a multiple zero in I. If there is a polynomial in F having a multiple zero in I,
there is a solution to Problem 1.

Theorem 1. Define f , ei, F , I and d as in Condition 1. If there is a polynomial
g ∈ F having a multiple zero in I, then there is a polynomial f̃ ∈ F such that f̃
has a multiple zero in I and d(f, f̃) is minimal.

Proof. First, we prove the case where I is bounded.
Note that f(x)+

∑n
i=1 tiei(x) has a multiple zero at a if and only if the system

of equations f(a)+
∑n

i=1 tiei(a) = f ′(a)+
∑n

i=1 tie
′
i(a) = 0 hold. When a is real,

the system of equations is equivalent to
(

f(a) +
n∑

i=1

tiei(a)

)2

+

(
f ′(a) +

n∑

i=1

tie
′
i(a)

)2

= 0. (1)

Taking G(a, t1, . . . , tn) as a function from Rn+1 to R defined by the left-hand
side of (1), similar arguments to those in the proof for Theorem 1 in [16] hold,
and we obtain the result.

Next, we prove the case where I is not bounded. To find a nearest polynomial,
it is sufficient to investigate polynomials belong to F̃ = { h ∈ F | d(f, h) ≤

The Nearest Real Polynomial with a Real Multiple Zero 35

d(f, g) }. Since the leading coefficients of the polynomials in F are equal from
the third condition of Condition 1, there exists r > 0 such that all of the zeros
of the polynomials in F̃ belong to a closed disk with center 0 and radius r.
Therefore, we can replace I by the closed bounded interval I ∩ [−r, r]. ��
Remark 1. The following examples show that Theorem 1 does not hold when the
number of ei is not finite, or I is not bounded and the degrees of the polynomials
in F are not constant.

1. Let f(x) = 1 − x, ei(x) = xi (1 ≤ i ∈ N),

F =

{
1 − x +

∞∑

i=1

cix
i

∣∣∣∣ ci ∈ R, #{ ci | ci
= 0 } < ∞
}

,

I = { 1 }, and d(g, h) = ‖g − h‖∞. Then, for 2 ≤ m ∈ N, the polynomial

fm(x) = 1 − x − 1
m − 1

(x2 − x3 + x4 − · · · − x2m−1)

belongs to F , d(f, fm) = 1/(m − 1) holds, and fm has a multiple zero at 1.
2. Let f(x) = 1, e1(x) = x, e2(x) = x2, I = { x ∈ R | 0 ≤ x }, and d(g, h) =

‖g − h‖∞. Then, the polynomial fε(x) = 1 − 2εx + ε2x2 (0 < ε ≤ 2) belongs
to F , d(f, fε) = 2ε holds, and fε(x) has a multiple zero at 1/ε ∈ I.

Remark 2. If we require deg(f̃) = deg(f), there might be no solution to Prob-
lem 1. Let f(x) = 1 + x + x2, e1(x) = 1, e2(x) = x, e3(x) = x2, I = { 1/2 },
and d(g, h) = ‖g − h‖∞. Then, the zero polynomial is the only nearest polyno-
mial. Any polynomial of degree two having 1/2 as a multiple zero is of the form
c(1/4 − x + x2), where c ∈ R, c
= 0. Since d(f, c(1/4 − x + x2)) = 1 + |c| holds,
there is no polynomial f̃ such that deg(f̃) = 2 and d(f, f̃) is minimal.

The following is a sufficient condition for the existence of a polynomial in F
having a multiple zero in I.

Theorem 2. Define f , ei, and F as in Condition 1. If 2 ≤ n and I does not
degenerate to a point, there is a polynomial in F having a multiple zero in I.

Proof. It is sufficient to prove the case where n = 2.

When the determinant D(x) =
∣∣∣∣
e1(x) e2(x)
e′1(x) e′2(x)

∣∣∣∣ is not identically equal to 0,

there is α ∈ I such that D(α)
= 0. Therefore, (e1(α), e′1(α)) and (e2(α), e′2(α))
are linearly independent over R. Hence, there exist c1, c2 ∈ R such that
(−f(α),−f ′(α)) = c1(e1(α), e′1(α))+c2(e2(α), e′2(α)). Therefore, f(x)+c1e1(x)+
c2e2(x) has a multiple zero at α ∈ I.

Next, we consider the case where D(x) is identically equal to 0. Changing the
indexes, if necessary, we can assume that e′1 is not the zero polynomial since e1

or e2 is not constant. Thus, we have e2/e1 = e′2/e′1 and set it as ϕ(x). Then, we
can write e2 = ϕe1 and e′2 = ϕe′1. On the other hand, by taking the derivatives of
the both sides of e2 = ϕe1, we obtain e′2 = ϕ′e1+ϕe′1. Therefore, ϕ′ is identically
equal to zero and ϕ is constant, say, c. That is, e2 = ce1 (c ∈ R) holds. This
contradicts the first condition of Condition 1. ��

36 H. Sekigawa

2.2 Main Theorem

Hereafter, we use the l∞-norm as the metric d. That is, for g = f +
∑n

i=1 biei

and h = f +
∑n

i=1 ciei, define d(g, h) = maxi{ |bi − ci| }. If we want to use a
weighted l∞-norm maxi{wi|bi − ci| } (wi > 0), we use { e1/w1, . . . , en/wn } as a
basis.

The following is the main theorem.

Theorem 3. Define f , ei, F , and I as in Condition 1.

1. If there is a polynomial in F having a multiple zero in I, then there is a
nearest polynomial f̃(x) = f(x) +

∑n
i=1 ãiei(x) having a multiple zero in I

such that |ai − ãi| = ‖f − f̃‖∞ with at most one exceptional i.
2. When I = {α }, the following holds.

(a) If (0, 0), (e1(α), e′1(α)), . . . , (en(α), e′n(α)) lie on a straight line, then a
necessary and sufficient condition for the existence of a nearest polyno-
mial f̃ having a multiple zero in I is that (ei(α), e′i(α))
= (0, 0) holds for
some i, and that (f(α), f ′(α)) lies on the straight line. When a nearest
polynomial f̃ exists, the following holds.

‖f − f̃‖∞ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|f ′(α)|∑n
i=1 |e′i(α)| , if e1(α) = · · · = en(α),

|f(α)|∑n
i=1 |ei(α)| , otherwise.

(b) If (0, 0), (e1(α), e′1(α)), . . . , (en(α), e′n(α)) do not lie on a straight line,
then there is a nearest polynomial f̃ having a multiple zero in I, and

‖f − f̃‖∞ = max
i=1,...,n

{
|ei(α)f ′(α) − e′i(α)f(α)|∑n

j=1 |ei(α)e′j(α) − e′i(α)ej(α)|

}
,

where we omit the elements whose denominators are 0.

Proof. Let Fε = { g ∈ F | ‖g − f‖∞ ≤ ε } (0 < ε). There exists g ∈ Fε

such that α is a real multiple zero of g if and only if (0, 0) belongs to F ε =
{ (h(α), h′(α)) | h(x) ∈ Fε }. Let f = (f(α), f ′(α)) and êi = (êi(α), ê′i(α)), where

êi(x) =
{

−ei(x), if ei(α) < 0 or if ei(α) = 0 and e′i(α) < 0,
ei(x), otherwise.

We can write F ε as f + P ε, where P ε = {
∑n

i=1 biêi | bi ∈ R, |bi| ≤ ε }. Then,
(0, 0) belongs to F ε if and only if −f belongs to the set P ε. This is equivalent
to f ∈ P ε, since P ε is symmetric about the origin.

Next, we prove that P ε is a convex polygon. Let Qε be {
∑n

i=1 2tiεêi | 0 ≤
ti ≤ 1 }. Then, P ε can be written as −ε

∑n
i=1 êi + Qε. The set Qε is a convex

polygon (see Theorem 4 in [17]), and thus, so is P ε.
We can find the vertices of P ε as follows. First, sort êi
= (0, 0) in increasing

order of the slopes ê′i(α)/êi(α) (if êi(α) = 0 then ê′i(α)/êi(α) is regarded as

The Nearest Real Polynomial with a Real Multiple Zero 37

∞). If two or more êi, say êi, êj , êk, have the same slope, replace êi, êj , êk

with êi + êj + êk, and write the sorted results as s1, . . . , sm. Using Theorem 4
in [17] we can describe the vertices of Qε in si, and shifting the vertices with
−ε
∑n

i=1 êi, we see that the vertices of P ε are, in counterclockwise order, εp0,
. . . , εp2m−1, where

pi =
{∑i

j=1 sj −
∑m

j=i+1 sj (i = 0, . . . , m − 1),
−pi−m (i = m, . . . , 2m − 1).

Figure 1 shows an example of (ei(α), e′i(α)), êi, and the corresponding convex
polygons P ε for ε = 0.5 and 1 when n = 3.

(a) (c)(b)

Fig. 1. (a) (ei(α), e′
i(α)) (i = 1, 2, 3). (b) êi (i = 1, 2, 3). (c) Convex polygons P ε for

ε = 0.5 (solid line) and ε = 1 (dashed line).

When (0, 0), (e1(α), e′1(α)), . . . , (en(α), e′n(α)) lie on a straight line, P ε de-
generates to a line segment, and the necessary and sufficient condition for the
existence of a nearest polynomial is obvious. Suppose that there is a nearest
polynomial. Then,

∑n
i=1 êi
= 0 holds and the two endpoints of the line segment

are ±ε
∑n

i=1 êi. Thus, the line segment can be described as the set of points
x belonging to the straight line passing through the two points ±

∑n
i=1 êi and

satisfying the inequality |x| ≤ ε
∑n

i=1 |êi|. Therefore, there exists f̃ ∈ Fε such
that f̃ has a multiple zero at α if and only if the inequality

|f | ≤ ε

n∑

i=1

|êi| (2)

holds. Statement (a) of the second statement follows from (2).
When the convex polygon P ε does not degenerate to a line segment, for every

êi
= 0 there exist exactly two edges parallel to êi, and for every edge there
exists at least one êi parallel to the edge. For êi
= 0, take the vertex εpj such
that the edge whose endpoints are εpj and εpj+1 is parallel to êi and j is min-
imal, and denote j as ν(i). For two vectors a = (a1, a2) and b = (b1, b2), we
denote a1b2 − a2b1 as det(a, b). Then, the equations defining the two straight
lines containing the two edges parallel to êi are det(êi, x±εpν(i)) = 0, which are
equivalent to det(êj , x) = ∓ε det(êj , pν(j)). Since (0, 0) belongs to the convex
polygon P ε, it can be described as the set of points x satisfying the inequalities

38 H. Sekigawa

| det(êi, x)| ≤ ε| det(êi, pν(i))| (i = 1, . . . , n). Thus, there exists f̃ ∈ Fε such
that f̃ has a multiple zero at α if and only if the following inequalities hold.

| det(êi, f)| ≤ ε| det(êi, pν(i))| (i = 1, . . . , n) (3)

The left-hand side of (3) is equal to |ei(α)f ′(α) − e′i(α)f(α)|. We compute the
right-hand side of (3). Note that pν(i) =

∑
j∈L(i) êj −

∑
j∈R(i) êj holds, where

L(i) = { j | det(êi, êj) < 0 } and R(i) = { j | det(êi, êj) > 0 }. Thus, we have

det(êi, pν(i)) =
∑

j∈L(i)

det(êi, êj) −
∑

j∈R(i)

det(êi, êj)

= −
∑

j∈L(i)

| det(êi, êj)| −
∑

j∈R(i)

| det(êi, êj)|

= −
n∑

j=1

| det(êi, êj)|.

Since | det(êi, êj)| = |ei(α)e′j(α)−e′i(α)ej(α)| holds, statement (b) of the second
statement holds.

Finally, it is sufficient to prove the case where I = {α } for the first state-
ment. When P ε degenerates to a line segment, the equality in (2) holds for the
minimum value of ε. Thus, the statement holds with no exceptional coefficient.

When convex polygon P ε does not degenerate to a line segment, f lies on an
edge of P ε for the minimum value of ε. Thus, f is equal to (1 − t)εpi + tεpi+1

for some i and 0 ≤ t ≤ 1. (If i = 2m − 1 then i + 1 is regarded as 0.) Therefore,
the statement holds. ��

Remark 3. A duality theorem (see, for example, p. 119 in [9]) is used for the
similar problem on finding a nearest real polynomial having a zero at a given
complex number [10]. In that problem, the minimum distance is computed in
Proposition 7.7.2 [21].

3 Computation Methods

In this section, we restrict numbers to real algebraic numbers and use exact
computations unless mentioned otherwise. The computation method when I
consists of one point is described in Theorem 3 and its proof. Hence, hereafter,
we assume that I does not degenerate to a point.

The following two subsections explain the computation methods for obtaining
candidate polynomials f̃ in two cases: the first case where |ai − ãi| = ‖f − f̃‖∞
for all i, and the second case where there is μ such that |aμ − ãμ| < ‖f − f̃‖∞.
Note that only the first case occurs when n = 1. From Theorem 2, there is a
nearest polynomial when 2 ≤ n. However, there might be no nearest polynomial
when n = 1.

The Nearest Real Polynomial with a Real Multiple Zero 39

3.1 First Case

We can write a nearest polynomial f̃ as f +‖f − f̃‖∞
∑n

i=1 σiei, where σi = ±1.
Therefore, it is sufficient to solve the following 2n−1 systems of equations

f(x) + t

(
e1(x) +

n∑

i=2

σiei(x)

)
= f ′(x) + t

(
e′1(x) +

n∑

i=2

σie
′
i(x)

)
= 0, (4)

under the conditions that x ∈ I and t ∈ R. Among the solutions we take one
such that |t| is minimal. If there is no solution satisfying these conditions, there
is no nearest polynomial in this case.

For simplicity, we write e1(x) +
∑n

i=2 σiei(x) as p(x). Since (f(α), f ′(α))
=
(0, 0) for α ∈ I, (4) has a solution at x = α ∈ I if and only if α is a zero of
ψ(x) = f(x)p′(x) − f ′(x)p(x), and (p(α), p′(α))
= (0, 0).

When ψ(x) is not identically equal to 0, ψ(x) has a finite number of zeros.
Take α ∈ I such that ψ(α) = 0 and (p(α), p′(α))
= (0, 0). Then, (4) has a unique
solution t = −f(α)/p(α) (or −f ′(α)/p′(α) when p(α) = 0).

Next, we consider the case where ψ(x) is identically equal to 0. If p′(x) is
not identically equal to 0, then from similar arguments to those in the proof for
Theorem 2, we have f(x) = cp(x) for some c ∈ R. Therefore, the zero polynomial
is the only polynomial having a multiple zero in I. Since 1 ≤ deg(p) holds when
2 ≤ n, p′(x) being identically equal to 0 implies that n = 1. In this case, e1 is
constant, say c. Note that c
= 0. Then, (4) is f(x) + ct = f ′(x) = 0. Take α ∈ I
such that f ′(α) = 0. Then, t = −f(α)/c.

In every case, there are only finitely many candidates α ∈ I.

3.2 Second Case

We can write a nearest polynomial f̃ as f(x)+ ãμeμ(x)+‖f − f̃‖∞
∑

i	=μ σiei(x),
where σi = ±1. Therefore, it is sufficient to solve the following n · 2n−2 systems
of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f(x) + tμeμ(x) + t

⎛

⎝eν(x) +
∑

i	=μ,ν

σiei(x)

⎞

⎠ = 0,

f ′(x) + tμe′μ(x) + t

⎛

⎝e′ν(x) +
∑

i	=μ,ν

σie
′
i(x)

⎞

⎠ = 0,

(5)

under the conditions that x ∈ I, tμ, t ∈ R, and |tμ| < |t|. Here, ν = 2 if μ = 1
and ν = 1 otherwise. Among the solutions, we take one such that |t| is minimal.
If there is no solution satisfying these conditions, there is no nearest polynomial
in this case.

For simplicity, we write eν(x) +
∑

i	=μ,ν σiei(x) as qμ(x). Take a multiple zero

α ∈ I of f̃(x). If the determinant
∣∣∣∣
eμ(x) qμ(x)
e′μ(x) q′μ(x)

∣∣∣∣ is 0 at x = α, we can decrease |t|

40 H. Sekigawa

such that the inequality |tμ| < |t| and the equations in (5) hold. This contradicts
the assumption that f̃ is a nearest polynomial. Therefore, the determinant is not
0 in a neighborhood U ⊂ I of α. Hence, we can write tμ and t as functions of x,
that is, tμ(x) and t(x). If |t(x)| does not have a minimum at x = α, by moving
β in I from α, we can decrease |t(β)| such that the condition |tμ(β)| < |t(β)|
and we obtain a polynomial g(x) = f(x) +

∑n
i=1 biei(x) (bi ∈ R) such that

g(β) = 0 and ‖f − g‖∞ < ‖f − f̃‖∞. This is a contradiction. Therefore, |t(x)|
has a minimum at x = α in U .

When t(x) is a constant c, the candidate polynomials satisfy |tμ(x)| < |c|. We
can take any α ∈ I as a candidate. (It is enough to take one α ∈ I.) When t(x)
is not constant and |t(x)| is minimal at x = α, α is a zero of dt(x)

dx or α is one of
the endpoints of I. Therefore, there are only finitely many candidates α ∈ I.

In every case, there are only finitely many candidates α ∈ I.

3.3 Computational Complexity

The systems of equations to be solved total 2n−1 in the first case and n · 2n−2

in the second case. Furthermore, we compare the values of t(α), where t are
rational functions with real algebraic coefficients and α are roots of the solved
equations.

3.4 Examples

Consider the following examples, which are closely related to the famous example
given by Wilkinson. Let f(x) =

∏20
i=1(x − i), e1(x) = x19, e2(x) = x18, and

I = R. For F1 = { f + c1e1 | c1 ∈ R } and F2 = { f + c1e1 + c2e2 | c1, c2 ∈
R }, there are unique nearest polynomials to f(x) having real multiple zeros.
That is, f(x) + 1.3508 . . .× 10−10x19 ∈ F1 with a multiple zero 15.4864 . . ., and
f(x) + 1.2689 . . . × 10−10(x19 + x18) ∈ F2 with a multiple zero 15.4869

4 Conclusion

For a given real univariate polynomial f and a prescribed closed real interval I,
we proposed a method for finding a real univariate polynomial f̃ such that f̃ has
a real multiple zero in I and ‖f − f̃‖∞ is minimal.

The method is rigorous but its efficiency needs to be investigated, especially
to perform for larger examples. Thus, avoiding redundant computations will be
one of our studies. Considering similar problems in norms other than a weighted
l∞-norm is another direction of study.

References

1. Hitz, M.A., Kaltofen, E.: The Kharitonov theorem and its applications in symbolic
mathematical computation. In: Proc. Workshop on Symbolic-Numeric Algebra for
Polynomials (SNAP 1996), pp. 20–21 (1996)

The Nearest Real Polynomial with a Real Multiple Zero 41

2. Kharitonov, V.L.: Asymptotic stability of an equilibrium position of a family of
systems of linear differential equations. Differentsial’nye Uravneniya 14(11), 2086–
2088 (1978)

3. Bartlett, A.C., Hollot, C.V., Lin, H.: Root location of an entire polytope of poly-
nomials: It suffices to check the edges. Mathematics of Controls, Signals and Sys-
tems 1, 61–71 (1988)

4. Qiu, L., Davison, E.J.: A simple procedure for the exact stability robustness com-
putation of polynomials with affine coefficient perturbations. Systems and Control
Letters 13, 413–420 (1989)

5. Rantzer, A.: Stability conditions for polytopes of polynomials. IEEE Trans. Auto.
Control 37(1), 79–89 (1992)

6. Bhattacharyya, S.P., Chapellat, H., Keel, L.H.: Robust Control, The Parametric
Approach. Prentice-Hall, Englewood Cliffs (1995)

7. Cheney, E.W.: Introduction to Approximation Theory, 2nd edn. Amer. Math. Soc.
(1999)

8. Remez, E.Y.: General Computational Methods of Tchebycheff Approximation.
Kiev (1957) (Atomic Energy Commission Translation 4491, 1–85)

9. Luenberger, D.G.: Optimization by Vector Space Methods. John Wiley & Sons
Inc., Chichester (1969)

10. Graillat, S.: A note on a nearest polynomial with a given root. ACM SIGSAM
Bulletin 39(2), 53–60 (2005)

11. Hitz, M.A., Kaltofen, E.: Efficient algorithms for computing the nearest polynomial
with constrained roots. In: Proc. 1998 International Symposium on Symbolic and
Algebraic Computation (ISSAC 1998), pp. 236–243 (1998)

12. Hitz, M.A., Kaltofen, E., Lakshman, Y.N.: Efficient algorithms for computing the
nearest polynomial with a real root and related problems. In: Proc. 1999 Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC 1999), pp.
205–212 (1999)

13. Kaltofen, E.: Efficient algorithms for computing the nearest polynomial with para-
metrically constrained roots and factors. In: Lecture at the Workshop on Symbolic
and Numerical Scientific Computation (SNSC 1999) (1999)

14. Mosier, R.G.: Root neighborhoods of a polynomial. Math. Comp. 47(175), 265–273
(1986)

15. Rezvani, N., Corless, R.C.: The nearest polynomial with a given zero, revisited.
ACM SIGSAM Bulletin 39(3), 73–79 (2005)

16. Sekigawa, H.: The nearest polynomial with a zero in a given domain. In: Proc.
2007 International Workshop on Symbolic-Numeric Computation (SNC 2007), pp.
190–196 (2007)

17. Sekigawa, H., Shirayanagi, K.: Locating real multiple zeros of a real interval poly-
nomial. In: Proc. 2006 International Symposium on Symbolic and Algebraic Com-
putation (ISSAC 2006), pp. 310–317 (2006)

18. Sekigawa, H., Shirayanagi, K.: On the location of zeros of an interval polyno-
mial. In: Wang, D., Zhi, L. (eds.) Symbolic-Numeric Computation, pp. 167–184.
Birkhäuser, Basel (2007)

19. Stetter, H.J.: The nearest polynomial with a given zero, and similar problems.
ACM SIGSAM Bulletin 33(4), 2–4 (1999)

20. Zhi, L., Wu, W.: Nearest singular polynomials. J. Symbolic Computation 26(6),
667–675 (1998)

21. Karow, M.: Geometry of spectral value sets. PhD thesis, Universität Bremen (2003)

Practical and Theoretical Issues for the

Computation of Generalized Critical Values of a
Polynomial Mapping

Mohab Safey El Din

INRIA Paris-Rocquencourt Center, SALSA Project,
UPMC, Univ Paris 06, LIP6,

CNRS, UMR 7606, LIP6,
UFR Ingéniérie 919, LIP6 Passy-Kennedy,

Case 168, 4, Place Jussieu, F-75252 Paris Cedex, France
Mohab.Safey@lip6.fr

Abstract. Let f ∈ Q[X1, . . . , Xn] be a polynomial of degree D. Com-

puting the set of generalized critical values of the mapping f̃ : x ∈ Cn →
f(x) ∈ C (i.e. {c ∈ C | ∃(xk)k∈N f(xk) → c and ||xk||.||dxk f || →
0 when k → ∞}) is an important step in algorithms computing sam-
pling points in semi-algebraic sets defined by a single inequality.

A previous algorithm allows us to compute the set of generalized crit-
ical values of f̃ . This one is based on the computation of the critical
locus of a projection on a plane P . This plane P must be chosen such
that some global properness properties of some projections are satisfied.
These properties, which are generically satisfied, are difficult to check in
practice. Moreover, choosing randomly the plane P induces a growth of
the coefficients appearing in the computations.

We provide here a new certified algorithm computing the set of genera-
lized critical values of f̃ . This one is still based on the computation of
the critical locus on a plane P . The certification process consists here in
checking that this critical locus has dimension 1 (which is easy to check
in practice), without any assumption of global properness. Moreover, this
allows us to limit the growth of coefficients appearing in the computations
by choosing a plane P defined by sparse equations. Additionally, we prove
that the degree of this critical curve is bounded by (D −1)n−1 − d where
d is the sum of the degrees of the positive dimensional components of
the ideal 〈 ∂f

∂X1
, . . . , ∂f

∂Xn
〉.

We also provide complexity estimates on the number of arithmetic
operations performed by a probabilistic version of our algorithm.

Practical experiments at the end of the paper show the relevance and
the importance of these results which improve significantly in practice
previous contributions.

1 Introduction

Consider f ∈ Q[X1, . . . , Xn] of degree D and the mapping f̃ : x ∈ Cn → f(x).
The set of generalized critical values of f̃ is defined as the set of points c ∈ C

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 42–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Practical and Theoretical Issues for the Computation 43

such that there exists a sequence of points (xk)k∈N such that f(xk) → c and
||xk|||dxk

f ||| → 0 when k tends to ∞ (see [20]). From [14,20], this set of points
contains:

– the classical set of critical values, i.e. the set of roots of the polynomial
generating the principal ideal: 〈f − T, ∂f

∂X1
, . . . , ∂f

∂Xn
〉 ∩ Q[T];

– the set of asymptotic critical values which is the set of complex numbers
for which there exists a sequence of points (xk)k∈N ⊂ Cn such that ||xk||
tends to ∞ and

∣∣∣
∣∣∣
(
Xi

∂f
∂Xj

)
(xk)
∣∣∣
∣∣∣ tends to 0 when k tends to ∞ for all

(i, j) ∈ {1, . . . , n} × {1, . . . , n}.

In this paper, we provide an efficient algorithm allowing us to compute the set
of generalized critical values of the polynomial mapping f̃ .

Motivation and Description of the Problem. The interest of computing asymp-
totic critical values of a polynomial mapping comes from the following result
which is proved in [28]: Let f ∈ Q[X1, . . . , Xn], and e ∈]0, e0[where e0 is less
than the smallest positive generalized critical value of the mapping x → f(x).
If there exists x ∈ Rn such that f(x) = 0 then each connected component of
the semi-algebraic set defined by f > 0 contains a connected component of the
real algebraic set defined by f − e = 0. Thus, computing generalized critical val-
ues is a preliminary step of efficient algorithms computing sampling points in a
semi-algebraic set defined by a single inequality, testing the positivity of a given
polynomial, etc. In [28], the computation of generalized critical values is also
used to decide if a given hypersurface contains real regular points. Once gen-
eralized critical values are computed, it remains to compute at least one point
in each connected component in a real hypersurface which can be tackled using
algorithms relying on the critical point method introduced in [13] (see also [26]
and [25] for recent developments leading to practical efficiency).

Given A ∈ GLn(C), we denote by fA the polynomial f(AX). In [28], the
following result is proved (see [28, Theorem 3.6]): There exists a Zariski-closed
subset A � GLn(C) such that for all A ∈ GLn(Q) \ A, the set of asymptotic
critical values of x → f(x) is contained in the set of non-properness of the
projection on T restricted to the Zariski-closure of the constructible set defined
by fA − T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂fA

∂Xn

= 0.

This result induces a probabilistic algorithm which consists in:

1. choosing randomly a matrix A ∈ GLn(Q) and compute an algebraic repre-
sentation of the Zariski-closure CA of the constructible set defined by:

fA − T =
∂fA

∂X1
= · · · =

∂fA

∂Xn−1
= 0,

∂fA

∂Xn

= 0

2. Compute the set of non-properness of the projection on T restricted to CA.

Certifying this algorithm is done by checking that for i = 1, . . . , n − 1 the pro-
jection πi : (x1, . . . , xn, t) ∈ Cn+1 → (xn−i+1, . . . , xn, t) ∈ Ci+1 restricted to the

44 M. Safey El Din

Zariski-closure of the constructible set defined by

fA − T =
∂fA

∂X1
= · · · =

∂fA

∂Xn−i
= 0,

∂fA

∂Xn−i+1

= 0

is proper.
The above algorithm allows us to deal with non-trivial examples and has

been used to compute sampling points in a semi-algebraic set defined by a single
inequality (see [7] for an application in computational geometry). Nevertheless,
some improvements and theoretical issues could be expected:

1. how to limit the growth of coefficients appearing in the computations which
are induced by the change of variables A ?

2. the certification of the above algorithm can be expensive on some examples;
can we find a way to obtain a certified algorithm whose practical efficiency
is better than the one of [28]?

3. can we improve the degree bounds on the geometric objects considered dur-
ing the computations?

Main Contributions. The main result of this paper is the following (see Theorem
3 below): Let f be a polynomial in Q[X1, . . . , Xn]. Suppose that for all i ∈
{1, . . . , n − 1}, the Zariski-closure denoted by Wi of the constructible set defined
by f − T = ∂f

∂X1
= · · · = ∂f

∂Xn−i
= 0, ∂f

∂Xn−i+1

= 0 has dimension i. Then, the set

of asymptotic critical values of f is contained in the set of non-properness of the
projection (x1, . . . , xn, t) ∈ Cn → t restricted to W1.

Note that this strongly simplifies the certification process of the algorithm
designed in [28] since it is now reduced to compute the dimension of a Zariski-
closed algebraic set. This also allows us to use simpler matrices A (for which
the aforementioned projections πi may be not proper) to avoid a growth of the
coefficients. This result is obtained by using local properness of these projections
πi instead of global properness which is used in the proof of [28, Theorem 3.6].

Additionally, we prove that, There exists a Zariski-closed subset A � Cn such
that for all (a1, . . . , an) ∈ Cn \ A, the ideal
(
〈L ∂f

∂X1
− a1, L

∂f

∂X2
− a2, . . . , L

∂f

∂Xn
− an〉 ∩ Q[X1, . . . , Xn]

)
+ 〈f − T 〉

has either dimension 1 in Q[X1, . . . , Xn, T] or it equals 〈1〉. Moreover, if the
determinant of the Hessian matrix associated to f is not identically null, there
exists a Zariski-closed subset A � Cn such that the above ideal has dimension 1
(see Proposition 1).

Thus, if the determinant of the Hessian matrix of f is not null, we are able
to apply the aforementioned result by performing linear change of variables to
compute asymptotic critical values by computing a set of non-properness of a
projection restricted to a curve. The degree of this curve is crucial to estimate
the complexity of our algorithm. We prove in Theorem 4 (see below) that it is
bounded by (D − 1)n−1 − d where d is the sum of the degrees of the positive

Practical and Theoretical Issues for the Computation 45

dimensional irreducible components of the variety associated to 〈 ∂f
∂X1

, . . . , ∂f
∂Xn

〉.
Note that d is an intrinsic quantity. This last result improves the degree bounds
provided in [28].

We describe two versions of this algorithm. The first one is certified and uses
Gröbner bases to perform algebraic elimination. The second one is probabilistic
and uses the geometric resolution of algorithm of [19].

We have implemented the certified version of the algorithm we have obtained
using Gröbner bases. We did experiments comparing

– the algorithm we obtained,
– the one which is designed in [28]
– the one designed in [20]
– an algorithm based on CAD computing the asymptotic critical values of a

polynomial.

It appears that the algorithm we design in this paper is significantly faster than
the previous ones. Compared to the one given [28] which is based on similar
geometric techniques, the gain comes from the fact the growth of the coefficients
appearing in our algorithm is indeed better controlled.

Organization of the Paper. Section 2 is devoted to recall basic definitions and
properties about generalized critical values of a polynomial mapping. Section 3
is devoted to the proof of the results presented above. Section 4 is devoted to
present practical experiments showing the relevance of our approach.

2 Preliminaries

In this section, we recall the definitions and basic properties of generalized critical
values which can be found in [20].

Definition 1. A complex number c ∈ C is a critical value of the mapping f̃ :
y ∈ Cn → f(y) if and only if there exists z ∈ Cn such that f(z) = c and
∂f

∂X1
(z) = · · · = ∂f

∂Xn
(z) = 0.

A complex number c ∈ C is an asymptotic critical value of the mapping f̃ :
y ∈ Cn → f(y) if and only if there exists a sequence of points (z�)�∈N ⊂ Cn such
that:

– f(z�) tends to c when � tends to ∞.
– ||z�|| tends to +∞ when � tends to ∞.
– for all (i, j) ∈ {1, . . . , n}2 ||Xi(z�)||.|| ∂f

∂Xj
(z�)|| tends to 0 when � tends to ∞.

The set of generalized critical values is the union of the sets of critical values
and asymptotic critical values of f̃ .

In the sequel, we denote by K0(f) the set of critical values of f̃ , by K∞(f) the
set of asymptotic critical values of f̃ , and by K(f) the set of generalized critical
values of f̃ (i.e. K(f) = K0(f) ∪ K∞(f)).

In [20], the authors prove the following result which can be seen as a general-
ized Sard’s theorem for generalized critical values.

46 M. Safey El Din

Theorem 1. Let f be a polynomial in Q[X1, . . . , Xn] of degree D. The set of
generalized critical values K(f) of the mapping f̃ : x ∈ Cn → f(x) ∈ C is
Zariski-closed in C. Moreover, D�K∞(f) + �K0(f) ≤ Dn − 1

The main interest of the set of generalized critical values relies on its topological
properties which are summarized below and proved in [20].

Theorem 2. The mapping fC : x ∈ Cn → f(x) ∈ C realizes a locally trivial
fibration in Cn \ f−1

C (K(fC)).
The mapping fR : x ∈ Rn → f(x) ∈ R realizes a locally trivial fibration in
Rn \ f−1

R (K(fR)).

Thus, K(f) is Zariski-closed, degree bounds on K(f) are Bézout-like degree
bounds and its topological properties ensure that there is no topological change
of the fibers of f taken above any interval of R which has an empty intersection
with K(f).

In the sequel, for the sake of simplicity, we identify a polynomial f ∈ Q[X1,
. . . , Xn] with the mapping fC : x ∈ Cn → f(x) ∈ C.

3 Main Results and Algorithms

3.1 Geometric Results

In the sequel, we consider maps between complex or real algebraic varieties. The
notion of properness of such maps will be relative to the topologies induced by
the metric topologies of C or R. A map φ : V → W of topological spaces is said
to be proper at w ∈ W if there exists a neighborhood B of w such that f−1(B)
is compact (where B denotes the closure of B). The map φ is said to be proper
if it is proper at all w ∈ W .

The following lemma is used in the proof of the main result of this section.

Lemma 1. Let Δn−j be the Zariski-closure of the constructible set defined by

∂f

∂X1
= · · · =

∂f

∂Xn−j
= 0,

∂f

∂Xn−j+1

= 0.

Suppose that for j = 1, . . . , n−1, Δn−j has dimension j and that its intersection
with the hypersurface defined by ∂f

∂Xn−j+1
= 0 is regular and non-empty.

Consider the projection πn−j+2 : (x1, . . . , xn) ∈ Cn → (xn−j+2, . . . , xn) ∈
Cj−1 and suppose its restriction to Δn−j to be dominant. There exists a Zariski-
closed subset Z � Cj−1 such that if α /∈ Z and if there exists a sequence of points
(xk)k∈N ∈ π−1

n−j+2(α) ∩ Δn−j, such that ∂f
∂Xn−j+1

(xk) → 0 when k → ∞, then

there exists a point in x ∈ Δn−j such that πn−j+2(x) = α and ∂f
∂Xn−j+1

(x) = 0.

Proof. Let x be a point of Δn−j+1, which has, by assumption, dimension j − 1.
Then x belongs to an irreducible component of dimension j−1 of the intersection
of a component C′ of the variety V defined by ∂f

∂X1
= · · · = ∂f

∂Xn−j
= 0 with the

Practical and Theoretical Issues for the Computation 47

hyperurface H defined by ∂f
∂Xn−j+1

= 0. The component C′ has thus a dimension
which is less than j + 1. Remark now that each component of V has dimension
greater than j−1 (since it is defined by the vanishing of n−j polynomials). Thus,
C′ has dimension j and its intersection with the hypersurface H is regular. Then,
C′ is an irreducible component of Δn−j . Consider C the union of such irreducible
components containing points of Δn−j+1.

Finally, each point in Δn−j+1 lies in C. Thus, it is sufficient to prove that for
a generic choice of α ∈ Cj−1, π−1

n−j+2(α) ∩ Δn−j+1 is zero-dimensional and not
isolated in the variety C.

Consider the ideal I = 〈 ∂f
∂X1

, . . . , ∂f
∂Xn−j

〉 : 〈 ∂f
∂Xn−j+1

〉∞ ⊂ Q[X1, . . . , Xn] and

the ideal J = I + 〈 ∂f
∂Xn−j+1

− U〉. Remark that I is equi-dimensional since it

has dimension j and contains 〈 ∂f
∂X1

, . . . , ∂f
∂Xn−j

〉 which has dimension at least j.
Moreover, by assumption, dim(J + 〈U〉) = dim(I) − 1 and πn−j+2 is dominant.
Then, for all k ∈ {1, . . . , n − j + 1} J ∩ Q[Xk, Xn−j+2, . . . , Xn, U] + 〈U〉 is
generated by a non-constant polynomial Pk. If for all k ∈ {1, . . . , n − j + 1}, α
does not belong to the leading coefficient of Pk seen as a univariate polynomial
in Xk, π−1

n−j+2(α) has a zero-dimensional intersection A with the variety defined
by Δn−j+1. This intersection lies in C.

Remark now that C is equi-dimensional since I is equi-dimensional, so that
the points in A are not isolated in C. ��

Theorem 3. Let f be a polynomial in Q[X1, . . . , Xn]. Suppose that for all i ∈
{1, . . . , n − 1}, the Zariski-closure denoted by Wi of the constructible set defined
by f − T = ∂f

∂X1
= · · · = ∂f

∂Xn−i
= 0, ∂f

∂Xn−i+1

= 0 has dimension i. Then, the set

of asymptotic critical values of f is contained in the set of non-properness of the
projection (x1, . . . , xn, t) ∈ Cn → t restricted to W1.

The proof is based on similar arguments than the one of [28, Theorem 3.6]. We
consider below the projections: Πi : (x1, . . . , xn, t) �→ (xn−i+2, . . . , xn, t) (for
i = n, . . . , 2).

Proof. Given an integer j in {n+1, . . . , 2}, we say that property Pj is satisfied if
and only if the following assertion is true: let c ∈ K∞(f), there exists a sequence
of points (z�)�∈N such that for all � ∈ N, z� ∈ Wj−1; f(z�) → c when � → ∞;
||z�|| tends to ∞ when � tends to ∞; and ||z�||.||dz�

f || → 0 when � → ∞.
Suppose now Pj+1 is true. We show below that this implies Pj . Since Pj+1

is supposed to be true, then there exists a sequence of points (z�)�∈N such that
for all � ∈ N, z� ∈ Wj , f(z�) → c when � → ∞, ||z�|| tends to ∞ when � tends
to ∞ and ||z�||.||dz�

f || → 0 when � → ∞.
We prove below that one can choose such a sequence (z�)�∈N in Wj−1.
Consider the mapping φ : Wj ⊂ Cn+1 → C2j+1 which associates to a point

x = (x1, . . . , xn, t) ∈ Wj the point:
⎛

⎝xn−j+2, . . . , xn, t,
∂f

∂Xn−j+1
(x),

⎛

⎝xn−j+r

n∑

k=n−j+1

|| ∂f

∂Xk
(x)||

⎞

⎠

r=1,...,j

⎞

⎠

48 M. Safey El Din

Remark that using the isomorphism between Cn and R2n, it is easy to prove
that φ is a semi-algebraic map. Denote by

(an−j+2, . . . , an, an+1, a0,n−j+1, an−j+1,n−j+1, . . . , an,n−j+1)

the coordinates of the target space of φ.
By assumption, the restriction of Πj to Wj has finite fibers. Then, there

exists a semi-algebraic subset Z � C2j+1 " R4j+2 such that specializing the
coordinates (an−j+2, . . . , an, a0,n−j+1, an−j+1,n−j+1) of the target space of φ to
a point

αn−j+2, . . . , αn, α0,n−j+1, αn−j+1,n−j+1

outside Z defines a finite set of points in the image of φ. Indeed, these points
are the images of the points in Wj such that their Xi coordinate (for i = n −
j + 2, . . . , n) equals αi and Xn−j+1

∑n
k=n−j+1 || ∂f

∂Xk
|| equals αn−j+1,n−j+1.

Given a point α = (αn−j+2, . . . , αn) ∈ Cj−1 and a complex number θ =
(η1) ∈ C, such that (αn−j+2, . . . , αn, η1) /∈ Z, we denote by y(α, β) a point
in the image of φ obtained by specializing the first (j − 1) coordinates (corre-
sponding to xn−j+2, . . . , xn) to α and the j + 2-th coordinate (corresponding to
xn−j+1

∑n
k=n−j+1 || ∂f

∂Xk
||). We also denote by x(α, θ) a point in the pre-image

of y(α, θ) by φ.
Consider c ∈ K∞(f). Then, since Pj+1 is supposed to be true, there exists

a sequence of points (z�)�∈N ⊂ Cn in the Zariski-closure of the constructible set
defined by: ∂f

∂X1
= · · · = ∂f

∂Xn−j
= 0, ∂f

∂Xn−j+1

= 0 such that f(z�) tends to c

when � tends to ∞, ||z�|| tends to ∞ when � tends to ∞, and ||z�||.||dz�
f || tends

to 0 when � tends to ∞.
Consider the images by φ of the points (z�, f(z�)) and their first j − 1 co-

ordinates α� and θ� of their j + 2-th coordinate. We consider now the double
sequence (αi, θ�)(i,�)∈N×N.

Note that, by construction, θ� tends to 0 when � tends to ∞ and that the last
j + 1 coordinates of y(αi0 , θ�) tend to zero when i0 is fixed and � tends to ∞ if
Xn−j+1(x(αi0 , θ�)) does not tend to 0 when � tends to ∞.

If for all � ∈ N, ∂f
∂Xn−j+1

(z�) = 0 the result is obtained. Else, one can suppose

that for all � ∈ N, ∂f
∂Xn−j+1

(z�)
= 0.
Remark that without loss of generality, we can do the assumption: for all

(i, j) ∈ N × N, x(αi, θ�) is not a root of ∂f
∂Xn−j+2

and (αi, θ�) /∈ Z.
Moreover, if j = n remark that the set of non-properness of Πn restricted to

the hypersurface defined by f−T = 0 is defined as the set of complex solutions of
the leading coefficient of f seen as a univariate polynomial in X1. Thus, without
loss of generality, one can suppose that for all i and for all t ∈ C, (αi, t) does not
belong to this set of non-properness. Else, up to a linear change of variables on
the variables Xn−j+2, . . . , Xn, one can suppose that the assumptions of Lemma 1
are satisfied and then we choose αi outside the Zariski-closed subset Z exhibited
in Lemma 1.

Remark that, since φ is semi-algebraic, Xn−j+1(x(α, θ)) is a root of a univari-
ate polynomial with coefficients depending on α and θ. Then, for a fixed integer

Practical and Theoretical Issues for the Computation 49

i0, since θ� tends to (0) when � tends to ∞, Xn−j+1(x(αi0 , θ�)) has either a finite
limit or tends to ∞ when � tends to ∞.

In the sequel, we prove that for i0 ∈ N, y(αi0 , θ�) has a finite limit in C2n+1

when � tends to ∞. Suppose first that Xn−j+1(x(αi0 , θ�)) has a finite limit when
� tends to ∞. Then, f(x(αi0 , θ�)) remains bounded (since Xn−j+1(x(αi0 , θ�)) has
a finite limit and since ∂f

∂X1
, . . . , ∂f

∂Xn−j
vanish at x(αi0 , θ�)). Thus, it has conse-

quently a finite limit. Moreover, without loss of generality, one can suppose that
Xn−j+1(x(αi0 , θ�)) does not tend to 0 which implies that ∂f

∂Xn−j+1
(x(αi0 , θ�))

tends to 0 when � tends to ∞.
Suppose now that Xn−j+1(x(αi0 , θ�)) tends to ∞ when � tends to ∞. This

immediately implies that ∂f
∂Xn−j+1

(x(αi0 , θ�)) tends to 0 when � tends to ∞. Since

Xn−j+1(x(αi0 , θ�)) tends to ∞ when � tends to ∞, and
(
Xk

∂f
∂Xn−j+1

)
(x(αi0 , θ�))

tends to 0 when � (for k ∈ {n− j +1, . . . , n}) tends to ∞, using [28, Remark 2.2]
and the curve selection Lemma at infinity (see [20, Lemma 3.3, page 9], this
implies there exists a semi-algebraic arc γi0 : [0, 1[→ Rn such that:

– γi0([0, 1[) is included in the intersection of Wj and of the linear subspace
defined by Xk = Xk(αi0) for k = n − j + 2, . . . , n, which implies that

n∑

p=1

(
Xp

∂f

∂Xp

)
(γi0 (ρ)) =

(
Xn−j+1

∂f

∂Xn−j+1

)
(γi0 (ρ))

– ||γi0(ρ)|| → ∞ and ||Xn−j+1(γi0(ρ))||.|| ∂f
∂Xn−j+1

(γi0(ρ))|| → 0 when ρ

tends to 1.

From Lojasiewicz’s inequality at infinity [4, 2.3.11, p. 63], this implies that
there exists an integer N ≥ 1 such that: ∀ρ ∈ [0, 1[, || ∂f

∂Xn−j+1
(γi0(ρ)))|| ≤

||Xn−j+1(γi0(ρ))||−1− 1
N . Following the same reasoning as in [20, Lemma 3.4,

page 9], one can re-parametrize γi0 such that γi0 becomes a semi-algebraic func-
tion from [0, +∞[to Rn and limρ→1 ||γ̇i0(ρ)|| = 1. Thus, the following yields:
∀p ∈ [0, +∞[, || ∂f

∂Xn−j+1
(γi0(ρ))||.||γ̇i0 (ρ)|| ≤ ||Xn−j+1(γi0(ρ))||−1− 1

N .||γ̇i0(ρ)||
and there exists B ∈ R such that

∫∞
0 ||γi0(ρ)||−1− 1

N .||γ̇i0(ρ)||dρ ≤ B.. Since

∫ ∞

0

||γi0(ρ)||−1− 1
N .||γ̇i0(ρ)||dρ ≥

∫ ∞

0

||Xn−j+1(γi0(ρ))||−1− 1
N .||γ̇i0(ρ)||dρ

and
∫∞
0 || ∂f

∂Xn−j+1
(γi0(ρ))||.||γ̇i0 (ρ)||dρ ≥ ||

∫∞
0

∂f
∂Xn−j+1

(γi0 (ρ)).γ̇i0(ρ)dρ||, one

has finally ||
∫∞
0

∂f
∂Xn−j+1

(γi0(ρ)).γ̇i0 (ρ)dρ|| ≤ B. Thus, the restriction of f is
bounded along γi0 .

Finally, we have proved that y(αi0 , θ�) tends to a point whose j + 1-th coor-
dinates is null.

Let yi0 be the limit of y(αi0 , θ�) and let pi0 ∈ Cn be (αi0 , ci0) and p� ∈ Cn be
the point whose coordinates are the j-first coordinates of y(αi0 , θ�).

50 M. Safey El Din

We prove now that yi0 belongs to the image of φ. If j = n this is a consequence
of the fact that (αi0 , ci0) does not belong to the set of non-properness of Πn

restricted to the vanishing set of f − T = 0. If j < n this is an immediate
consequence of Lemma 1.

Thus, Π−1
j+1(pi0) ∩ Wj−1
= ∅ and one can extract a converging subsequence

from (x(αi0 , θ�))�∈N and let xi0 be the limit of the chosen converging subsequence.
It remains to prove that:

– (f(xi0))i0∈N tends to c when i0 tends to ∞
–
(
Xi

∂f
∂Xj

)
(xi0) for (i, j) ∈ {1, . . . , n} tends to 0 when i0 tends to ∞.

which is a consequence of the continuity of the polynomials f and Xi
∂f

∂Xj
for

i = 2, . . . , n, and the definition of the sequence of points x(αi, θ�). ��

Proposition 1. Let f ∈ Q[X1, . . . , Xn] be a polynomial of degree D ≥ 2. There
exists a Zariski-closed subset A � Cn such that for all (a1, . . . , an) ∈ Cn \A, the
ideal
(
〈L ∂f

∂X1
− a1, L

∂f

∂X2
− a2, . . . , L

∂f

∂Xn
− an〉 ∩ Q[X1, . . . , Xn]

)
+ 〈f − T 〉

has either dimension 1 in Q[X1, . . . , Xn, T] or it equals 〈1〉. Moreover, if the
determinant of the Hessian matrix associated to f is not identically null, there
exists a Zariski-closed subset A � Cn such that the above ideal has dimension 1.

Proof. This is an immediate consequence ofSard’s theorem (see [4, Theorem 2.5.11
and 2.5.12]) applied to the mapping (x, �) ∈ Cn × C →

(
� ∂f

∂X1
, . . . , � ∂f

∂Xn

)
��

Theorem 4. Let d be the sum of the degrees of the positive-dimensional primes
associated to the ideal 〈 ∂f

∂X1
, . . . , ∂f

∂Xn
〉. The degree of the curve associated to the

ideal
(
〈L ∂f

∂Xn
− 1, ∂f

∂X1
, . . . , ∂f

∂Xn−1
〉 ∩ Q[X1, . . . , Xn]

)
+ 〈f − T 〉 is dominated by

(D − 1)n−1 − d.

Proof. From [9], the sum of the degrees of the prime ideals associated to the
radical of the ideal I = 〈 ∂f

∂X2
, . . . , ∂f

∂Xn
〉 is dominated by (D − 1)n−1. Consider

the intersection P of these primes which contain ∂f
∂X1

. Remark now that P +
〈 ∂f

∂Xn
〉 = P and then, that the variety associated to P + 〈 ∂f

∂Xn
〉 is the union

of the irreducible components of positive dimension associated to the radical of
the ideal 〈 ∂f

∂X1
, . . . , ∂f

∂Xn
〉. Note now that the degree of the curve defined by the

ideal J = 〈L ∂f
∂Xn

− 1, ∂f
∂X1

, . . . , ∂f
∂Xn−1

〉 ∩ Q[X1, . . . , Xn] is bounded by the one of
I : P∞ and then is bounded by (D − 1)n−1 − d since d is the sum of the degrees
of the primes associated to P . At last, note that J + 〈f −T 〉 has the same degree
than the one of J .

Practical and Theoretical Issues for the Computation 51

3.2 Algorithms and Complexity

Our algorithm takes as input a polynomial f ∈ Q[X1, . . . , Xn] and outputs
a non-zero univariate polynomial in Q[T] whose set of roots contains the set
of generalized critical values of the mapping x ∈ Cn → f(x). We focus on the
computation of the asymptotic critical values, the case of the critical values being
already investigated in [28]. Our procedure makes use of algebraic elimination
algorithms to represent algebraic varieties defined as the Zariski-closure of the
constructible sets defined by fA − T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂f

∂Xn

= 0.

Below, we show how to use Gröbner bases or the geometric resolution algorithm
in our procedures computing the set of asymptotic critical values of f .

Using Gröbner Bases. From Proposition 1, if the determinant of the Hessian
matrix of f is not zero, the set of matrices A such that the Zariski-closure CA

of the complex solution set of fA −T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂fA

∂Xn

= 0 has

dimension 1 is Zariski-opened in GLn(C). From Theorem 3, it suffices to find A ∈
GLn(Q) such that CA has dimension 1 and to compute the set of non-properness
of the restriction to CA of the projection π : (x1, . . . , xn, t) → t. The computation
of the set of non-properness requires as input a Gröbner basis encoding the
variety to which the considered projection is restricted. Such a routine is shortly
described in [28] (see also [26] or [16] for a complete description); it is named
SetOfNonProperness in the sequel.

Algorithm computing K∞(f) using Gröbner bases

– Input: a polynomial f in Q[X1, . . . , Xn].
– Output: a univariate polynomial P ∈ Q[T] such that its zero-

set contains K∞(f).

– Let D = det(Hessian(f)). If D = 0 then return 1
– Choose A ∈ GLn(C).
– Compute a Gröbner basis G the ideal generated by

fA − T,
∂fA

∂X1
, . . . ,

∂fA

∂Xn−1
, L

∂fA

∂Xn
− 1

and its dimension d. If d
= 1 then return to the previous step.
– Return SetOfNonProperness(G, {T })

In the above algorithm, one can first choose matrices A performing a sparse
linear change of variables in order to reduce the height of the integers appearing
in the computations. Nevertheless, the use of Gröbner bases as a routine of alge-
braic elimination does not allow us to obtain a complexity which is polynomial
in the quantity bounding the degree of the curve defined as the Zariski-closure
of the complex solution set of fA − T = ∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0 ∂fA

∂Xn
− 1
= 0.

52 M. Safey El Din

Using the Geometric Resolution Algorithm. To this end, we consider the geomet-
ric resolution algorithm (see [11], [12,19] and references therein). This algorithm
is probabilistic and returns a rational parametrization of the complex solution
set of the input (see [29] for situations where the input contains a parameter).
Here is how it can be used to compute the set of asymptotic critical values of
the mapping x ∈ Cn → f(x) ∈ C.

Probabilistic Algorithm computing K∞(f) using the
Geometric Resolution Algorithm

– Input: a polynomial f in Q[X1, . . . , Xn].
– Output: a univariate polynomial P ∈ Q[T] such that its zero-

set contains K∞(f).

– Consider T as a parameter in the polynomial system fA−T =
∂fA

∂X1
= · · · = ∂fA

∂Xn−1
= 0, ∂fA

∂Xn

= 0 and compute a geometric

resolution.
– Return the least common multiple of the denominators in the

coefficients of the polynomial q.

Using Theorem 4 and Proposition 1, one obtains the following complexity
result as a by-product of the complexity estimates given in [19].

Theorem 5. The above probabilistic algorithm computing K∞(f) performs at
most O(n7δ4n) arithmetic operations in Q where δ is bounded by (D − 1)n−1 −
d, where d denotes the sum of the degrees of the positive dimensional primes
associated to the radical of the ideal generated by 〈 ∂f

∂X1
, . . . , ∂f

∂Xn
〉.

The above complexity estimate improves the one of [28, Theorem 4.3]. Remark
that d is intrinsic.

4 Practical Results

We have implemented the algorithm presented in the preceding section using
Gröbner bases. The Gröbner engine which is used is FGb, release 1.26, [8] which
is implemented in C by J.-C. Faugère. Computing rational parametrization of the
complex roots of a zero-dimensional ideal from a Gröbner basis is done by RS,
release 2.0.37, [21] which is implemented in C by F. Rouillier. Isolation of real
roots of univariate polynomials with rational coefficients is done by RS using
the algorithm provided in [23].

The resulting implementation is a part of the RAGLib Maple library (release
2.24) [24].

All the computations have been performed on a PC Intel Pentium Centrino
Processor 1.86 GHz with 2048 Kbytes of Cache and 1024 MB of RAM.

Practical and Theoretical Issues for the Computation 53

4.1 Description of the Test-Suite

Our test-suite is based on polynomials coming from applications. Most of the
time, the user-question is to decide if the considered polynomial has constant sign
on Rn or to compute at least one point in each connected component outside its
vanishing set. As explained in the introduction, the computation of generalized
critical values is a preliminary step of efficient algorithms dealing with these
problems.

The following polynomial appears in a problem of algorithmic geometry study-
ing the Voronoi Diagram of three lines in R3. In [7], the authors focus on de-
termining topology changes of the Voronoi diagram of three lines in R3. The
question was first reduced to determining if the zero-set of the discriminant of
the following polynomial with respect of the variable u contains real regular
points.

This discriminant has degree 30. This discriminant is the product of a
polynomial of degree 18 and several polynomials up to an odd power whom
zero-set could not contain a real regular point since they are sums of squares.
The polynomial of degree 18 is Lazard II. D. Lazard and S. Lazard have also
asked to determine if the following polynomial which is denoted by Lazard I
in the sequel is always positive.

16 a
2 (

α
2 + 1 + β

2)
u
4 + 16 a

(
−α β a

2 + axα + 2 aα
2 + 2 a + 2 aβ

2 + ayβ − α β
)

u
3 +

((
24 a

2 + 4 a
4)

α
2 +

(
−24 β a

3 − 24 aβ − 8 ya
3 + 24 xa

2 − 8 ay
)

α + 24 a
2

β
2 + 4 β

2−

8 β xa
3 + 4 y

2
a
2 + 24 yβ a

2 − 8 axβ + 16 a
2 + 4 x

2
a
2)

u
2 +

(
−4 α a

3 + 4 ya
2−

4 ax − 8 aα + 8 β a
2 + 4 β

)
(β − aα + y − ax) u +

(
a
2 + 1

)
(β − aα + y − ax)2

The following polynomial appears in [15]. The problem consists in determining
the conditions on a, b, c and d such that the ellipse defined by (x−c)2

a2 + (y−d)2

b2 = 1
is inside the circle defined by x2+y2−1 = 0. The problem is reduced to compute
at least one point in each connected component of the semi-algebraic set defined
as the set of points at which the polynomial below (which is denoted by Ellipse-
Circle in the sequel) does not vanish.

4 a
6

c
2

d
2 + 2 a

2
b
2

d
6 − 6 a

2
b
2

d
4 + a

4
c
4 + 2 a

4
c
2

d
6 − 6 a

2
b
2

c
4 − 6 a

4
b
2

c
4 + 4 a

6
b
2

d
2 +

a
8

b
4 + 6 b

4
c
2

d
2 − 2 b

6
c
4

d
2 + a

8
d
4 + 6 a

2
b
6

d
2 − 8 a

4
b
4

d
2 − 4 a

4
b
2

d
6 − 6 b

4
c
4

d
2 − 8 a

4
b
4

c
2 +

6 a
6

b
2

c
2 − 8 a

2
b
4

c
2 + 6 a

4
b
4

d
4 − 2 b

4
c
2

d
4 − 4 a

2
b
4

c
6 − 4 a

6
b
4

c
2 − 6 a

2
b
4

d
4 − 2 a

4
c
4

d
2 +

10 a
4

b
2

d
4 − 2 a

2
b
8

c
2 − 6 a

2
b
6

c
4 + a

4
b
8 + 6 a

2
b
2

d
2 + 6 a

6
b
4

d
2 − 4 a

4
b
6

d
2 + b

4
d
4 + b

4
c
8 +

10 a2b4c4 + 6 a2b2c2 + 4 a2b6c2 + a4d8 + 4 b6c2d2 + 6 a4b6c2 − 8 a4b2d2 +

4 a
4

b
2

c
2 − 2 a

8
b
2

d
2 + 6 a

4
c
2

d
2 + 4 a

2
b
4

d
2 − 6 a

6
b
2

d
4 + 6 a

4
b
4

c
4 − 2 a

6
c
2

d
4 +

2 b
4

c
6

d
2 + 2 a

2
b
2

c
6 − 6 a

4
c
2

d
4 + b

8
c
4 + 2 a

4
b
2 − 4 a

4
d
2 + a

4 − 2 b
6 − 2 a

6 + a
8 +

b
8 + b

4 + 2 a
2

b
4 + 2 b

6
c
6 − 2 b

8
c
2 − 6 b

6
c
4 + 2 a

6
b
4 − 2 a

2
b
2 − 2 a

6
b
6 + 2 a

4
b
6 −

2 a
2

b
8 − 6 a

4
b
2

c
4

d
2 + 2 a

2
b
4

c
4

d
2 + 2 a

4
b
2

c
2

d
4 − 6 a

2
b
4

c
2

d
4 − 6 a

4
b
2

c
2

d
2 − 6 a

2
b
4

c
2

d
2 +

4 a
2

b
2

c
4

d
4 + 2 a

2
b
2

c
2

d
6 + 2 a

2
b
2

c
4

d
2 + 2 a

2
b
2

c
2

d
4 − 10 a

2
b
2

c
2

d
2 + 6 a

2
b
6

c
2

d
2 −

6 a
4

b
4 + 2 a

2
b
6 − 2 a

8
b
2 + 2 a

6
b
2 + 6 a

6
b
2

c
2

d
2 − 10 a

4
b
4

c
2

d
2 − 4 b

4
c
6 + 6 b

4
c
4 + 6 b

6
c
2 −

2 a
6

c
2 + 2 a

2
b
2

c
6

d
2 + a

4
c
4

d
4 − 2 a

4
c
2 − 2 b

6
d
2 − 4 a

4
d
6 + 2 a

6
d
6 −

2 a
8

d
2 − 6 a

6
d
4 + 6 a

6
d
2 + b

4
c
4

d
4 − 4 b

4
c
2 + 6 a

4
d
4 − 2 b

4
d
2 (

a
2 − b

2)

54 M. Safey El Din

The polynomials
∑n

i=1

∏
j 	=i(Xi − Xj) which are called in the sequel LLn

are studied in [18]. They are used as a benchmark for algorithms decompos-
ing polynomials in sums of squares (see also [30]). In the sequel we consider
LL5 (which has degree 4 and contains 5 variables), LL6 (which has degree
5 and contains 6 variables) and LL7 (which has degree 6 and contains 7
variables).

We also consider polynomials coming from the Perspective-Three-Point Prob-
lem [10] which is an auto-calibration problem. Classifying the number of solutions
on some instances of this problem leads to compute at least one point in each
connected component outside a hypersurface. We consider two instances of this
problem leading to study

– a polynomial denoted by P3Piso of degree 16 having 4 variables and 153
monomials.

– a polynomial denoted P3P of degree 16 having 5 variables and 617
monomials.

These polynomials are too big for being printed here.

4.2 Practical Results

We only report on timings for the computation of asymptotic critical values.
Below, in the column JK we give the timings for computing asymptotic critical

values by using the algorithm of [20]. We obviously use the same Gröbner engine
FGb for both algorithms.

Using similar arguments than the ones used in [1], one can prove that
Cylindrical Algebraic Decomposition can compute a Zariski-closed set contain-
ing the generalized critical values of the mapping f : x → f(x) by computing
a CAD adapted to f − T (where T is a new variable) and considering T as the
smallest variable. The column CAD contains the timings of an implementation
of the open CAD algorithm in Maple which is due to G. Moroz and F. Rouillier.

The column S07 contains the timings obtained using the probabilistic
algorithm described in [28] to compute generalized critical values. In particu-
lar, we don’t count the time required to certify the output of this algorithm.

The column Algo contains the timings obtained with the implementation of
the algorithm described in this paper.

The symbol ∞ means that the computations have been stopped after 2 days
of computations without getting a result.

It appears that on all the considered problems, the algorithm given in [20]
does provide an answer in a reasonable amount of time.

On problems having at most 4 variables, the open CAD algorithm behaves
well (except on polynomials having a big degree) and our implementation has
comparable timings. On problems having more variables, our implementation
ends with reasonable timings while open CAD either does not end after 2 days
of computations or requires too much memory. This is mainly due to the highest

Practical and Theoretical Issues for the Computation 55

degrees appearing in the projection step of CAD while the degrees of the polyno-
mials appearing during the execution of our algorithms is better controlled. The
same conclusions hold when we take into account the computation of classical
critical values.

In comparison with the algorithm provided in [28], our algorithm performs
better on harder problems. On some problems, we obtain a speed-up of 30.
This is mainly due to the fact that the growth of coefficients appearing in our
algorithm is better controlled than the ones appearing in the algorithm designed
in [28]: we take here advantage of Theorem 3 to choose sparse matrices A.
Note nevertheless that on smaller problems, our algorithm may be slower: this
is mainly due to the search of an appropriate projection (preserving the sparsity
of the initial problem) used for the computation of asymptotic critical values.

Table 1. Computation time obtained on a PC Intel Pentium Centrino Processor, 1.86
GHz with 2048 Kbytes of Cache and 1024 MB of RAM.

BM �vars Degree JK Algo S07 CAD
Lazard I 6 8 ∞ 14 sec. 2 sec. ∞
Lazard II 5 18 ∞ 192 sec. 3 hours ∞

Ellipse-Circle 4 12 ∞ 0.7 sec. 90 sec. 5 min.

LL5 5 4 ∞ 0.2 sec. 0.1 sec. 20 sec.

LL6 6 5 ∞ 9 sec. 2 sec. ∞
LL7 7 6 ∞ 28 sec. 139 sec. ∞

P3Piso 4 16 ∞ 1000 sec. 2 hours 20 min.

P3P 5 16 ∞ 1100 sec. 7 hours ∞.

References

1. Alcazar, J.G., Schicho, J., Sendra, J.R.: A delineability-based method for comput-
ing critical sets of algebraic surfaces. J. Symb. Comput. 42(6), 678–691 (2007)

2. Bank, B., Giusti, M., Heintz, J., Pardo, L.-M.: Generalized polar varieties and
efficient real elimination procedure. Kybernetika 40(5), 519–550 (2004)

3. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. Springer,
Heidelberg (2003)

4. Benedetti, R., Risler, J.-J.: Real algebraic and semi-algebraic sets. Actualités
Mathématiques, Hermann (1990)

5. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) GI Fachtagung 1975. LNCS, vol. 33, pp.
515–532. Springer, Heidelberg (1975)

6. Corvez, S., Rouillier, F.: Using computer algebra tools to classify serial manipula-
tors. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 31–43. Springer,
Heidelberg (2004)

7. Everett, H., Lazard, D., Lazard, S., Safey El Din, M.: The topology of the Voronoi
diagram of three lines in R3. In: Proceedings of Symposium on Computational
Geometry. ACM Press, South-Korea (2007)

8. Faugère, J.-C.: Gb/FGb, http://fgbrs.lip6.fr

http://fgbrs.lip6.fr

56 M. Safey El Din

9. Fulton, W.: Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebi-
ete, vol. 2. Springer, Heidelberg (1984)

10. Gao, X.-S., Hou, X.-R., Tang, J., Cheng, H.-F.: Complete Solution Classification
for the Perspective-Three-Point Problem. IEEE Trans. Pattern Anal. Mach. In-
tell. 25(8), 930–943 (2003)

11. Giusti, M., Heintz, J., Morais, J.-E., Morgenstern, J., Pardo, L.-M.: Straight-line
programs in geometric elimination theory. Journal of Pure and Applied Alge-
bra 124, 101–146 (1998)

12. Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system
solving. Journal of Complexity 17(1), 154–211 (2001)

13. Grigoriev, D., Vorobjov, N.: Solving systems of polynomials inequalities in subex-
ponential time. Journal of Symbolic Computation 5, 37–64 (1988)

14. Jelonek, Z., Kurdyka, K.: On asymptotic critical values of a complex polynomial.
Journal für die Reine und Angewandte Mathematik 565, 1–11 (2003)

15. Lazard, D.: Quantifier elimination: optimal solution for two classical examples.
Journal of Symbolic Computation 5(1-2), 261–266 (1988)

16. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. Journal of Sym-
bolic Computation 42, 636–667 (2007)

17. Lecerf, G.: Kronecker magma package for solving polynomial systems,
http://www.math.uvsq.fr/∼lecerf/software/

18. Lax, A., Lax, P.: On sums of squares. Linear Algebra App. 20, 71–75 (1978)
19. Lecerf, G.: Computing the equidimensional decomposition of an algebraic closed

set by means of lifting fibers. Journal of Complexity 19(4), 564–596 (2003)
20. Kurdyka, K., Orro, P., Simon, S.: Semi-algebraic Sard’s theorem for generalized

critical values. Journal of differential geometry 56, 67–92 (2000)
21. Rouillier, F.: RS, RealSolving, http://fgbrs.lip6.fr
22. Rouillier, F.: Solving zero-dimensional systems through the Rational Univariate

Representation. AAECC Journal 9(5), 433–461 (1999)
23. Rouillier, F., Zimmermann, P.: Efficient isolation of polynomial real roots. Journal

of Computational and Applied Mathematics 162(1), 33–50 (2003)
24. Safey El Din, M.: RAGLib (Real Algebraic Geometry Library) (September 2007),

http://www-spiral.lip6.fr/∼safey/RAGLib
25. Safey El Din, M., Schost, É.: Polar varieties and computation of one point in each

connected component of a smooth real algebraic set. In: Proceedings of the 2003
international symposium on Symbolic and algebraic computation, pp. 224–231.
ACM Press, New York (2003)

26. Safey El Din, M., Schost, É.: Properness defects of projections and computation
of one point in each connected component of a real algebraic set. Discrete and
Computational Geometry 32(3), 417–430 (2004)

27. Safey El Din, M.: Generalized critical values and solving polynomial inequalities.
In: Proceedings of International Conference on Polynomial Systems (2004)

28. Safey El Din, M.: Testing sign conditions on a multivariate polynomial and ap-
plications. Mathematics in Computer Science, Special issue on Algorithms and
Complexity 1(1), 177–207 (2007)

29. Schost, E.: Computing Parametric Geometric Resolutions. Journal of Applicable
Algebra in Engineering, Communication and Computing 13(5), 349–393 (2003)

30. Schweighofer, M.: Global optimization of polynomials using gradient tentacles and
sums of squares. SIAM Journal on Optimization 17(3), 920–942 (2006)

http://www.math.uvsq.fr/~lecerf/software/
http://fgbrs.lip6.fr
http://www-spiral.lip6.fr/~safey/RAGLib

Which Symmetric Homogeneous Polynomials

Can Be Proved Positive Semi-definite by
Difference Substitution Method?

Liangyu Chen and Zhenbing Zeng

Software Engineering Institute, East China Normal University
Shanghai, China

{lychen,zbzeng}@sei.ecnu.edu.cn
http://www.sei.ecnu.edu.cn

Abstract. Recently a method based on substitution of difference of
variables has been developed by Yang [12] for verifying the positive
semi-definiteness of homogeneous polynomials. In this paper, we inves-
tigate the structure of the cone formed by all symmetric homogeneous
polynomials whose positive semi-definiteness can proven by difference
substitution method.

Keywords: Homogeneous symmetric polynomial, Positive Semi-
Definiteness, Difference Substitution.

1 Introduction

Let Rn be the n-dimensional linear space and Rn
≥0 be the following subset of

Rn:

Rn
≥0 = {(x1, x2, · · · , xn)|x1 ≥ 0, x2 ≥ 0, · · · , xn ≥ 0}.

We call Rn
≥0 the positive quadrant of Rn. Let Sd

n ⊂ R[x1, x2, · · · , xn] be the
set of all symmetric homogeneous polynomials (also called forms) of degree d.
G.Polya [7] proved that if a form f(x1, x2, · · · , xn) is strictly positive in Rn

≥0,
then the coefficients of the following expression

expand((x1, x2, · · · , xn)Nf(x1, x2, · · · , xn))

are all positive if N is sufficiently large, where expand is the function that
distribute products over sums, as defined in Maple. But this method leads
to a rapid increase of computation complexity if it is used to check the positive
semi-definiteness (PSD). Huang et al. in [8] suggested a method to construct
a family of PSD ternary polynomials f

(d)
1 , f

(d)
2 , · · · , f

(d)
kd

(called Schur Basis) of
degree d such that each ternary polynomial f(x1, x2, x3) can be denoted as a
linear combination (called Schur Partition) of f

(d)
i (i = 1, 2, · · · , kd) uniquely:

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 57–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.sei.ecnu.edu.cn

58 L. Chen and Z. Zeng

f = a1f
(d)
1 + a2f

(d)
2 + · · · + akd

f
(d)
kd

.

Recently Schur Partition is generalized to forms with n variables in [2]. It is
obvious that if the Schur Partition of a given polynomial has no negative coef-
ficient then the polynomial must be PSD. There are examples to show that the
reverse is not true, that is, a PSD form may have some negative coefficients in
its Schur Partition. In this sense, Schur Partition provides a heuristic method
for checking PSD of forms. Another easy heuristic method for checking PSD for
symmetric polynomials is based on one easy observation and another not-so-
easy observation as following. The easier one is that f(x1, x2, · · · , xn) is PSD in
the positive quadrant if and only if f(x1, x2, · · · , xn) ≥ 0 for all x1, x2, · · · , xn

with 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn. Meanwhile, not many people observed that for
sufficiently many PSD forms f(x1, x2, · · · , xn), the coefficients of the following
expression

expand(subs(x1 = u1, x2 = u1 + u2, · · · , xn = u1 + u2 + · · · + un), f))

are positive, where subs stands for substitution, as defined in Maple. In [12],
This naive method was extended to asymmetric (homogeneous) polynomials by
Yang in the following way: To each permutation σ = (i1, i2, · · · , in) of integers
1, 2, · · · , n, we associate the difference substitution Sσ defined by

Sσ = {xi1 = u1, xi1 = u1 + u2, · · · , xin = u1 + u2 + · · · + un}

and calculate expand(subs(Sσ, f(x1, x2, · · · , xn)). If all coefficients of such
expressions are positive, for all n! permutations, then the original polynomial f
is PSD. If all coefficients of these expressions are negative, for at least one substi-
tution, then f is not PSD. Otherwise, for some substitutions the coefficients are
neither all-positive nor all-negative. In the third case, do the difference substitu-
tions for these branches recursively. This method is called ”successive difference
substitution”. Yang actually proved some quite complicated inequalities using
this method.

In this paper we discuss the structure of the set Dd
n of positive semi-definite ho-

mogeneous symmetric polynomials, which can be proven by difference
substitution method, the measure of the cone in the whole positive semi-definite
polynomials, the relation between Schur Partition and difference substitution,
and the way to enlarge the convex cone for proving more polynomial inequalities.

The remainder of this paper is organized as follows. In Section 2 we introduce
the general notations. In Section 3, we prove that the Dd

n is a finitely generated
cone, and give a procedure SolvExtr for calculating the extremal rays of the cones
based on Chernikova’s algorithm. In Section 4, we show the process of calculating
extreme rays about D4

4. In Section 5, we will show that all PSD forms which
Schur Partition has no negative coefficients are contained in Dd

n. In Section 6, we
give a method to extend the cone generated by difference substitution. Section
7 is the conclusion.

Which Symmetric Homogeneous Polynomials 59

2 Notation

Assume in this paper that n ∈ N, n ≥ 2 and the variables are x1, x2, · · · , xn.

Notation 1. Let σ1, σ2, · · · , σn ∈ R[x1, x2, · · · , xn] be elementary symmetric
polynomials. They are viewed as:

σk =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik
, k = 1, 2, · · · , n.

Notation 2. It is well known that every homogeneous symmetric polynomial
f ∈ Sd

n can be denoted as a combination F (σ1, σ2, · · · , σn), where:

F (σ1, σ2, · · · , σn) =
∑

ad1,d2,··· ,dnσ1
d1σ2

d2 · · ·σn
dn ,

d1, d2, · · · , dn ≥ 0, d1 + 2d1 + · · · + ndn = d.

Then we define a list Σ(n, d) whose element is a monomial σ1
d1σ2

d2 · · ·σn
dn ,

which satisfied the conditions

d1, d2, · · · , dn ≥ 0,

d1 + 2d1 + · · · + ndn = d.

Also we mark p as the cardinality of Σ(n, d).

Notation 3. A polyhedral cone C ⊂ Rn is finitely generated, if it is generated
by a finite set of vectors, i.e., if it has the form

C = cone(α1, · · · , αr)

= {x|x =
r∑

j=1

μjαj , μj ≥ 0, j = 1, · · · , r},

where α1, · · · , αr are some vectors in Rn, and r is a positive integer [1].
A cone C is convex if

αx + (1 − α)y ∈ C, ∀x, y ∈ C, ∀α ∈ [0, 1].

A vector or point x ∈ C is said to be an extreme point of C if there do not exist
vectors y ∈ C and z ∈ C, with y
= x and z
= x, and a scalar α ∈ (0, 1) such
that x = αy+(1−α)z. Or equivalently, x can not be expressed as a combination
of convex vectors in C, all of which are different from x.

Notation 4. Let C-PSD denote the set of ternary positive semi-definite homo-
geneous symmetric polynomials where the coefficients of final expanding expres-
sions under Schur Partition are non-negative. Similarly, we use D-PSD to denote
the set corresponding to Difference Substitution.

60 L. Chen and Z. Zeng

3 D-PSD Cone

In this section, we will describe the D-PSD topological structure.

Theorem 1. Dd
n is a finitely generated convex cone.

Proof: In Notation 2.2, we define Σ(n, d) = [s1, s2, · · · , sp] whose elements are
ordered by lexicographic term ordering. We can get the value of p, which is the
cardinality of Σ(n, d), by calculating the coefficients of zd in expansion of the
following series

(1 + z + z2 + · · ·)(1 + z2 + z4 + · · ·) · · · (1 + zn + z2n + · · ·).

We know that every symmetric polynomial f ∈ Sd
n can be transformed into a

combination of s1, s2, · · · , sp. Conversely, given an array (α1, · · · , αp) ∈ Rp, we
can find a polynomial f(s1, s2, · · · , sp) = α1s1 + α2s2 + · · · + αpsp. Substitut-
ing the elementary symmetric polynomials σk into f(s1, s2, · · · , sp), we can get
a new homogeneous symmetric polynomial F (x1, x2, · · · , xn) ∈ Sn

d , whose co-
efficients are combinations of α1, α2, · · · , αp. So it can build up an one-to-one
correspondence between linear space Rp and Sd

n.
We use difference substitution to transform F (x1, x2, · · · , xn) into another

polynomial

φ(u1, u2, · · · , un) =
q∑

k=1

Lk(α1, α2, · · · , αp)Uk,

where every Uk(k = 1, 2, · · · , q) is a monomial of ui1
1 ui2

2 · · ·uin
n with i1, i2, · · · , in

≥ 0 and i1 + i2 + · · · + in = d, and every Lk(k = 1, 2, · · · , n) is the linear
combination of α1, α2, · · · , αp.

Since p is the cardinality of

{(d1, d2, · · · , dn)|d1, d2, · · · , dn ≥ 0; d1 + 2d2 + · · · + ndn = d}

and q is the cardinality of

{(i1, i2, · · · , in)|i1, i2, · · · , in ≥ 0; i1 + i2 + · · · + in = d},

it can easily be proven that q > p when n, d > 1. We also list some values of p
and q in Table 1.

Thus, φ(u1, u2, · · · , un) corresponding to the point coordinates (α1, α2, · · · , αn)
∈ Rp, belongs to D-PSD if and only if (α1, α2, · · · ,αn) satisfies by the following
group of inequalities:

Lk(α1, α2, · · · , αp) ≥ 0, (k = 1, 2, · · · , q).

From the Definition 3, we obtain that the semi-algebraic set of Lk is a polyhe-
dral convex cone in Rp. Moreover, the cone is generated by finite half lines from

Which Symmetric Homogeneous Polynomials 61

original point. The points on half lines are all the extreme points of polyhedral
convex cone. We mark the cone of D-PSD as C1.

To avoid confusion, we use a vector ξ = (ξ1, ξ2, · · · , ξp) to represent the whole
points of a half line defined by the original point and the point (ξ1, ξ2, · · · , ξp).
So

Dd
n = {α1s1 + α2s2 + · · · + αpsp|(α1, α2, · · · , αp) ∈ C1},

is a polyhedral convex cone in Sd
n. Furthermore, one can deduce that α1s1 +

α2s2 + · · · + αpsp is an extreme ray of Dd
n if and only if (α1, α2, · · · , αp) is an

extreme point of C1. �

From the above proof, provided every αk ≥ 0 (k = 1, 2, · · · , p), the polynomial
F = α1s1 + α2s2 + · · · + αpsp can be proven to be positive semi-definite easily
by checking the sign of coefficients in the new polynomial under difference sub-
stitution. So we get Rp

≥0 ⊂ C1. This represents that the measure μ(C1 ∩ S) of
intersection between the cone C1 and the unit ball S in Rp is larger than zero.

It is well known that a polyhedral convex cone has two dual representations:
halfspaces and extremal rays. To transform one form into the other, Chernikova’s
algorithm [3,4,5] is often used. In Theorem 2, we describe the outline of General
Chernikova’s Algorithm which does not limit in non-negative domain. More de-
tails can be found in [3,4,5,6,10,11,9].

Theorem 2. (General Chernikova’s Algorithm)
Let C = {x|Ax ≥ 0} be a polyhedral cone where A is an m × n matrix and
H = {x|cx ≥ 0} be a halfspace of Rn. Chernikova’s algorithm calculates the
extremal rays of cone C in an incremental manner. The target cone is pruned
recursively as follows:

C0 = Rn,

Ck = Ck−1 ∩ Hk 1 ≤ k ≤ m.

Let Q = {r1, r2, · · · , rs} be the irredundant set of unidirectional or extremal rays
and E = {z1, z2, · · · , zt} be the irredundant set of bidirectional rays of C. Let
Q′ and E′ denote the unidirectional and bidirectional set associated of C ∩ H
respectively.

Suppose E0 = {e1, e2, · · · , en} is the set of canonical basis vectors and Q0 =
∅. The result Q of Cm has the final extremal rays exactly. Let · denote the dot
product between vectors. In each step, we may encounter two following cases:

Case A: If there exists zk satisfying c·zk
= 0, then it does the following operations

z′k = ±zk & c · z′k > 0,

i
= k & z′i = λzi + μzk & λ > 0 & c · z′i = 0,

r′j = λrj + μzk & λ > 0 & c · r′j = 0,

Q′ = {r′1, r′2, · · · , r′s, z
′
k},

E′ = {z′1, · · · , z′k−1, z
′
k+1, · · · , z′t}.

62 L. Chen and Z. Zeng

Case B: If all zk satisfy c · zk = 0, the bidirectional rays E remain unchangeably.
The new extremal rays Q′ are calculated by

Q′ = Q= ∪ Q> ∪ Q,

where

Q= = {r|r ∈ Q, r · c = 0},
Q> = {r|r ∈ Q, r · c > 0},
Q< = {r|r ∈ Q, r · c < 0},
Q = {r|r · c = 0, r = λr1 + μr2,

(r1, r2) ∈ Q> × Q<, λ > 0}.

It is noted that the initial algorithm only got the non-negative solutions and
generated many redundant unidirectional rays in computation, while Fernandez
and Quinton [6] extended the original algorithm to get the general solutions
by differentiating between unidirectional rays and bidirectional lines. Verge [11]
proposed a new enhanced criterion to filter out redundant linear combinations.
However, it is remarked that Chernikova’s algorithm is inconvenient to be im-
plemented with parallel computation as it is very complicated and non intuitive.

Theorem 3. Let L1, L2, · · · , Lq be a system of real homogeneous linear equa-
tions about variables α1, α2, · · · , αp and C be the coefficient matrix. Let C1

be the a convex cone which is finitely generated by the system of inequalities
L1 ≥ 0, L2 ≥ 0, · · · , Lq ≥ 0 in Rp and extr(C1) be the extreme points of cone
C1. Let the rank of coefficient matrix C be p, then for any ξ = (ξ1, ξ2, · · · , ξp) ∈
extr(C1), it can construct a new matrix C′ constituted by some row vectors from
L1 ≥ 0, L2 ≥ 0, · · · , Lq ≥ 0 which satisfy Lk(ξ) = 0. The rank of coefficients
matrix of C′ must be p − 1.

Proof: It is obvious that for any ξ ∈ extr(C1), there exists at least one poly-
nomial Lk(k = 1, 2, · · · , q) equal to zero at least. So we can assume that for
ξ ∈ extr(C1),

Lk(ξ) = 0, (1 ≤ k ≤ m),
Lk(ξ) > 0, (m + 1 ≤ k ≤ q),

and the rank of coefficient matrix, which is constructed by L1, · · · , Lm, is smaller
than p−1. Thus, we can get the basic solutions of equations L1 = 0, · · · , �Lm = 0
as follows

α1, · · · , αk, αj = cj,1α1 + · · · + cj,kαk, 1 < k < p, k < j ≤ p.

So assume the extreme point

ξ = (ξ1, · · · , ξk, ck+1,1ξ1 + · · · + ck+1,kξk, · · · , cp,1ξ1 + · · · + cp,kξk),

Which Symmetric Homogeneous Polynomials 63

where all L1(ξ), · · · , Lm(ξ) are zero. Without loss of generality, we randomly
select two points ξ′, ξ′′ ∈ Rk,

ξ′ = (ξ′1, · · · , ξ′k, ck+1,1ξ
′
1 + · · · + ck+1,kξ′k, · · · , cp,1ξ

′
1 + · · · + cp,kξ′k),

ξ′′ = (ξ′′1 , · · · , ξ′′k , ck+1,1ξ
′′
1 + · · · + ck+1,kξ′′k , · · · , cp,1ξ

′′
1 + · · · + cp,kξ′′k),

which can satisfy the equations L1 = 0, · · · , Lm = 0. Especially, we can select

ξ′1 = ξ1 + η1ε, · · · , ξ′k = ξk + ηkε,

ξ′′1 = ξ1 − η1ε, · · · , ξ′′k = ξk − ηkε,

where ε is a random positive real number and (η1, · · · , ηk) is an unit normal
vector of (ξ1, · · · , ξk). Therefore we can get

ξ′, ξ′′ ∈ Rp \ {cξ|c > 0},
ξ′ + ξ′′ = 2ξ,

L1(ξ′) = · · · = Lm(ξ′) = 0,

L1(ξ′′) = · · · = Lm(ξ′′) = 0.

To complete the proving of this theorem, we need to prove the point ξ′, ξ′′ ∈
C1. To ξ′, ξ′′, there remain 2(q − m) linear functions

Lm+1(ξ′), · · · , Lq(ξ′), Lm+1(ξ′′), · · · , Lq(ξ′′).

Based on the above hypotheses, we have

Lm+1(ξ) > 0, · · · , Lq(ξ) > 0.

So according to the principle of sign preservation, we can select a sufficiently
small non-zero number ε to make

Lm+1(ξ′) > 0, · · · , Lq(ξ′) > 0,

Lm+1(ξ′′) > 0, · · · , Lq(ξ′′) > 0.

Thus we have ξ, ξ′, ξ′′ ∈ C1 synchronously, and 2ξ = ξ′ + ξ′′. However, we know
already that ξ is an extreme point of cone C1, then it is a contraction. So we
complete this proof. �

Based on Theorem 1 and Theorem 3, we give an algorithm SolvExtr to calculate
extreme rays of cone C1. SolvExtr is arranged to four steps.

Step 1. Let S be {L1, L2, · · · , Lq} with variables α1, · · · , αp and the set of
extreme points ExtSet be null initially. Calculate the rank of coefficient matrix
of S. If the rank r is less than p − 1, then return the incorrectness about the
inequalities definition of cone and end the algorithm.
Step 2. If the rank r ≥ p−1, it can extract p−1 row vectors from the coefficient
matrix and construct a new (p−1)×p matrix. we arrange the new matrixes into
a list

M = (M1, M2, · · · , Mk),

where each element is a (p − 1) × p matrix and
(
k=q
p−1

)
.

64 L. Chen and Z. Zeng

Step 3. Calculate the extreme points until j = k (Implement in parallel com-
putation conveniently).

Step 3.1. Calculate the rank of all elements in M . For Mj(1 ≤ j ≤ k), we
can get the rank rj . If rj = p − 1 denotes that the dimension of base of slj is
one, we can get the base as (α1α, α2α, · · · , αpα) where α is a parameter.

Step 3.2. Substitute the base vector into S \Mj , we can get cpα, cp+1α, · · · ,
cqα. If each of cp, cp+1, · · · , cq is non-negative, thus

ExtSet = ExtSet ∪ {(α1, α2, · · · , αp)}.

If every element of cp, cp+1, · · · , cq is non-positive, then

ExtSet = ExtSet ∪ {(−α1,−α2, · · · ,−αp)}.

Step 4. Return the set ExtSet of extreme points.
Since

(
k=q
p−1

)
is finite, the algorithm SolvExtr can terminate normally. We can

sum up the above process to calculate all extreme points of a polyhedral convex
cone Dd

n which is constituted by many positive semi-definite homogeneous sym-
metric polynomials under difference substitution for given n, d ≥ 0.

DevSubExp Algorithm
Input: n, d ≥ 0.
Output: the homogeneous coordinates of extreme points of Dd

n. Step 1: con-

struct the list Σ(n, d) = [s1, s2, · · · , sp].
Step 2: construct the semi-algebraic set of Lk (k = 1, 2, · · · , q).
Step 3: calculate the extreme points of the polyhedral convex cone constituted
by Lk (k = 1, 2, · · · , q) based on SolvExtr Algorithm or General Chernikova’s
Algorithm.
Step 4: calculate the extreme points of Dd

n.

4 An Example for DevSubExp

In this section, we will show how to calculate the extreme points of D4
4 based on

DevSubExp Algorithm.
Firstly, we have

n = 4, d = 4.

According to the definition of Σ(n, d), we get

Σ(4, 4) = [σ4
1 , σ2

1σ2, σ1σ3, σ
2
2 , σ4]

where σ1, σ2, σ3, σ4 are the elementary symmetric polynomials.
The cardinality of Σ(4, 4) is five, so we construct a polynomial

F = α1σ
4
1 + α2σ

2
1σ2 + α3σ1σ3 + α4σ

2
2 + α5σ4.

Which Symmetric Homogeneous Polynomials 65

By substituting the elementary symmetric polynomials and the substitution
operators

σ1 = x1 + x2 + x3 + x4,

σ2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

σ3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4,

σ4 = x1x2x3x4,

x1 = u1,

x2 = u1 + u2,

x3 = u1 + u2 + u3,

x4 = u1 + u2 + u3 + u4,

the polynomial F (σ1, σ2, σ3, σ4) is transformed into φ(u1, u2, u3, u4). We can
get the coefficients of φ(u1, u2, u3, u4) about ud1

1 ud2
2 ud3

3 ud4
4 by lexicographic term

ordering to construct the semi-algebraic set C1 and calculate the hyperplanes
Lk

L1 = α1 + 36α2 + 16α3 + 96α4 + 256α5,

L2 = 3α1 + 108α2 + 48α3 + 288α4 + 768α5,

· · · · · · ,

L34 = α4 + 8α5,

L35 = α5.

Executing the SolvExtr Algorithm, we can get the extreme points of C1

ExtSet = [(1, 0, 0, 0, 0), (
16
15

, 0,− 1
15

, 0, 0), (
5
3
,−4

9
,−2

3
,
5
9
,−1

9
),

(
64
45

,−16
45

,−16
45

,
16
45

,− 1
15

), (
8
5
,− 4

15
,− 7

10
,

7
15

,− 1
10

),

(
6
5
,

1
10

,− 3
10

, 0, 0), (0, 1,−4, 3, 0)].

With the polynomial F (σ1, σ2, σ3, σ4). The seven extremal rays of D4
4 are

E1 = x1x2x3x4,

E2 =
1
15

(x2
1x2x3 + x2

1x2x4 + x2
1x3x4 + x1x

2
2x3 + x1x

2
2x4 + x1x2x

2
3 + x1x2x

2
4

+x1x
2
3x4 + x1x3x

2
4 + x2

2x3x4 + x2x
2
3x4 + x2x3x

2
4 − 12x1x2x3x4),

66 L. Chen and Z. Zeng

E3 =
1
9
(x4

1 − x3
1x2 − x3

1x3 − x3
1x4 + x2

1x2x3 + x2
1x2x4 + x2

1x3x4 − x1x
3
2 + x1x

2
2x3

+x1x
2
2x4 + x1x2x

2
3 − 3x1x2x3x4 + x1x2x

2
4 − x1x

3
3 + x1x

2
3x4 + x1x3x

2
4

−x1x
3
4 + x4

2 − x3
2x3 − x3

2x4 + x2
2x3x4 − x2x

3
3 + x2x

2
3x4 + x2x3x

2
4 − x2x

3
4

+x4
3 − x3

3x4 − x3x
3
4 + x4

4),

E4 =
1
45

(3x4
1 − 4x3

1x2 − 4x3
1x3 − 4x3

1x4 + 2x2
1x

2
2 + 4x2

1x2x3 + 4x2
1x2x4 + 2x2

1x
2
3

+4x2
1x3x4 + 2x2

1x
2
4 − 4x1x

3
2 + 4x1x

2
2x3 + 4x1x

2
2x4 + 4x1x2x

2
3 − 24x1x2x3x4

+4x1x2x
2
4 − 4x1x

3
3 + 4x1x

2
3x4 + 4x1x3x

2
4 − 4x1x

3
4 + 3x4

2 − 4x3
2x3 − 4x3

2x4

+2x2
2x

2
3 + 4x2

2x3x4 + 2x2
2x

2
4 − 4x2x

3
3 + 4x2x

2
3x4 + 4x2x3x

2
4 − 4x2x

3
4 + 3x4

3

−4x3
3x4 + 2x2

3x
2
4 − 4x3x

3
4 + 3x4

4),
E5 = −2x2

1x
2
4 − 2x2

2x
2
3 − 2x2

1x
2
2 − 2x2

1x
2
3 + x3

3x4 + x1x
3
4 + x2x

3
4 + x3x

3
4 + x3

1x2

+x3
1x3 + x3

1x4 + x3
2x3 + x3

2x4 + x1x
3
3 + x2x

3
3 + x1x

3
2 − 2x2

2x
2
4 − 2x2

3x
2
4,

E6 =
1
10

(x2
1x

2
2 − x2

1x2x3 − x2
1x2x4 + x2

1x
2
3 − x2

1x3x4 + x2
1x

2
4 − x1x

2
2x3 − x1x

2
2x4

−x1x2x
2
3 − x1x2x

2
4 − x1x

2
3x4 − x1x3x

2
4 + x2

2x
2
3 − x2

2x3x4 + x2
2x

2
4 − x2x

2
3x4

−x2x3x
2
4 + x2

3x
2
4 + 6x1x2x3x4),

E7 =
1
30

(3x4
1 − 2x3

1x2 − 2x3
1x3 − 2x3

1x4 − 2x2
1x

2
2 + 3x2

1x2x3 + 3x2
1x2x4 − 2x2

1x
2
3

+3x2
1x3x4 − 2x2

1x
2
4 − 2x1x

3
2 + 3x1x

2
2x3 + 3x1x

2
2x4 + 3x1x2x

2
3 + 3x1x2x

2
4

−2x1x
3
3 + 3x1x

2
3x4 + 3x1x3x

2
4 − 2x1x

3
4 + 3x4

2 − 2x3
2x3 − 2x3

2x4 − 2x2
2x

2
3

+3x2
2x3x4 − 2x2

2x
2
4 − 2x2x

3
3 + 3x2x

2
3x4 + 3x2x3x

2
4 − 2x2x

3
4 + 3x4

3 − 2x3
3x4

−2x2
3x

2
4 − 2x3x

3
4 + 3x4

4 − 12x1x2x3x4).

We also calculate the extremal rays for different p and q, listed in Table 1.

Table 1. Extremal Rays

(n,d) (p,q) Count of
Extremal Rays

(3,3) (3,10) 3

(3,4) (4,15) 5

(3,5) (5,21) 12

(3,6) (7,28) 34

(3,7) (8,36) 118

(4,3) (3,20) 4

(4,4) (5,35) 7

(4,5) (6,56) 24

5 Relation of C-PSD and D-PSD

Let’s consider ternary homogeneous symmetric polynomials. The variables are
x1, x2, x3, and the substitution operators are x1 = u1, x2 = u1 + u2, x3 = u1 +

Which Symmetric Homogeneous Polynomials 67

u2 +u3. Let Dd
3 be the set of d-form ternary positive semi-definite homogeneous

symmetric polynomials in Sd
3 under difference substitution. It is easily deduced

that

f, g ∈ Dd
3 ⇒ f + g ∈ Dd

3 ,

f ∈ Dd1
3 , g ∈ Dd2

3 ⇒ f · g ∈ Dd1+d2
3 .

In [8], Huang gave an algorithm to partition a ternary positive semi-definite ho-
mogeneous symmetric polynomial into a linear combination of five bases. Though
the algorithm is a sufficient condition for 3-ary d-forms to be positive semi-
definite, it can be used to prove many non-trivial inequalities. Since both Schur
Partition and Difference Substitution are useful tools for inequality proving, we
want to discover the relation between the two methods. We have Theorem 4 as
follows.

Theorem 4. For any given d, Cd
3 ⊆ Dd

3 .

Proof: The algorithm Schur Partition decomposes a ternary positive semi-
definite homogeneous symmetric polynomial into a linear combination of five
bases. The five bases are

f
(d)
0,1 = xd−2

1 (x1 − x2)(x1 − x3) + xd−2
2 (x2 − x3)

(x2 − x1) + xd−2
3 (x3 − x1)(x3 − x2) (d ≥ 2),

f
(d)
0,2 = xd−3

1 (x2 + x3)(x1 − x2)(x1 − x3)

+xd−3
2 (x3 + x1)(x2 − x3)(x2 − x1)

+xd−3
3 (x1 + x2)(x3 − x1)(x3 − x2) (d ≥ 3),

f
(d)
0,j = (x1 + x2 + x3)n−2j(x1x2 + x2x3 + x3x1)j−3

(x1 − x2)2(x2 − x3)2(x3 − x1)2 (3 ≤ j ≤ �d/2�),

f
(d)
0,
(d+2)/2� =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x2x3)
d−3
2 (x2 + x3)(x1 − x2)(x1 − x3)

+(x3x1)
d−3
2 (x3 + x1)(x2 − x3)(x2 − x1)

+(x1x2)
d−3
2 (x1 + x2)(x3 − x1)(x3 − x2)
(d ≡ 1(mod2), d ≥ 5),

(x2x3)
d−2
2 (x1 − x2)(x1 − x3)

+(x3x1)
d−2
2 (x2 − x3)(x2 − x1)

+(x1x2)
d−2
2 (x3 − x1)(x3 − x2)

(d ≡ 0(mod2), d ≥ 4),

f
(d)
i,j = (x1x2x3)ifn−3i

0,j (1 ≤ i ≤ �d − 2
3

�).

For the first basis f
(d)
0,1 , we substitute the substitution operators and obtain

f
(d)
0,1 = ud−2

1 (u2
2 + u2u3) + (u1 + u2)d−2(−u2u3) + (u1 + u2 + u3)d−2(u2u3 + u2

3)

= ud−2
1 (u2

2 + u2u3) + (u1 + u2 + u3)d−2u2
3 + [(u1 + u2 + u3)d−2 − (u1 + u2)d−2]u2u3.

68 L. Chen and Z. Zeng

Because all u1, u2, u3 ≥ 0 and the coefficients of [(u1 + u2 + u3)d−2 − (u1 +
u2)d−2] are non-negative, it is obvious that f

(d)
0,1 ∈ Dd

3 .

For the second basis f
(d)
0,2 , we have

f
(d)
0,2 = ud−3

1 (2u1u
2
2 + 2u1u2u3 + 2u3

2 + 3u2
2u3 + u2u

2
3) − (u1 + u2)d−3

(2u1u2u3 + u2
2u3 + u2u

2
3) + (u1 + u2 + u3)d−3(2u1u2u3 + 2u1u

2
2 + u2

2u3 + u2u
2
3)

= ud−3
1 (2u1u

2
2 + 2u1u2u3 + 2u3

2 + 3u2
2u3 + u2u

2
3) + (u1 + u2 + u3)d−3(2u1u

2
3)

+[−(u1 + u2)d−3 + (u1 + u2 + u3)d−3](2u1u2u3 + u2
2u3 + u2u

2
3).

Because the coefficients of [(u1 + u2 + u3)d−3 − (u1 + u2)d−3] are non-negative,
it is obvious that f

(d)
0,2 ∈ Dd

3 .

For the third basis f
(d)
0,j (3 ≤ �d

2�), these following propositions are true.

(x1 + x2 + x3)d−2j inDd−2j
3 ,

(x1x2 + x2x3 + x3x1)j−3 ∈ D2j−6
3 ,

(x1 − x2)2(x2 − x3)2(x3 − x1)2 ∈ D6
3.

Thus f
(d)
0,j ∈ Dd

3 .

For the fourth basis f
(d)
0,
(d+2)/2�, when d ≡ 1(mod2), d ≥ 5, let m = d−3

2 , we
have

f
(d)
0,
(d+2)/2�=(u1 + u2)m(u1+u2+u3)m(2u1u

2
2 + 2u1u2u3 + 2u3

2 + 3u2
2u3 + u2u

2
3)

+(u1 + u2 + u3)mum
1 (−2u1u2u3 − u2

2u3 − u2u
2
3)

+um
1 (u1 + u2)m(2u1u2u3 + 2u1u

2
2 + u2

2u3 + u2u
2
3)

= (u1 + u2)m(u1 + u2 + u3)m(2u1u
2
2 + 2u3

2 + 2u2
2u3)

+um
1 (u1 + u2)m(2u1u2u3 + 2u1u

2
2 + u2

2u3 + u2u
2
3)

+[(u1 + u2)m − (u1)m](u1 + u2 + u3)m(2u1u2u3 + u2
2u3 + u2u

2
3).

when d ≡ 0(mod2), d ≥ 4, let m = d−2
2 , we have

f
(d)
0,
(d+2)/2� = (u1 + u2)m(u1 + u2 + u3)m(u2

2 + u2u3)

+(u1 + u2 + u3)mum
1 (−u2u3) + um

1 (u1 + u2)m(u2u3 + u2
3)

= (u1 + u2)m(u1 + u2 + u3)mu2
2 + um

1 (u1 + u2)m(u2u3 + u2
3)

+[(u1 + u2)m − (u1)m](u1 + u2 + u3)m(2u1u2u3 + u2
2u3 + u2u

2
3).

Because the coefficients of [(u1 +u2)m − (u1)m] are non-negative, it is obvious
that f

(d)
0,
(d+2)/2� ∈ Dd

3 .

Since the above four bases belong to Dd
3 , we have f

(d)
i,j ∈ Dd

3 normally.
So for every ternary polynomial whose positive semi-definiteness can be proven

by Schur Partition, it also can be proven by Difference Substitution. Thus we
complete this proof. �

Which Symmetric Homogeneous Polynomials 69

6 Extension of D-PSD Cone

It is remarked that the current D-PSD cone does not contain all positive semi-
definite homogeneous symmetric polynomials. For example, we have the follow-
ing 4-ary 4-form polynomial T (x1, x2, x3, x4) which can not be proven under
difference substitution in one round.

T = 25x4
1 − 42x3

1x2 − 42x3
1x3 − 42x3

1x4 + 43x2
1x

2
2 + 24x2

1x2x3 + 24x2
1x2x4

+43x2
1x

2
3 + 24x2

1x3x4 + 43x2
1x

2
4 − 42x1x

3
2 + 24x1x

2
2x3 + 24x1x

2
2x4 + 24x1x2x

2
3

−42x1x2x3x4 + 24x1x2x
2
4 − 42x1x

3
3 + 24x1x

2
3x4 + 24x1x3x

2
4 − 42x1x

3
4 + 25x4

2

+25x4
4 − 42x3

2x3 − 42x3
2x4 + 43x2

2x
2
3 + 24x2

2x3x4 + 43x2
2x

2
4 − 42x2x

3
3

+24x2x
2
3x4 + 24x2x3x

2
4 − 42x2x

3
4 + 25x4

3 − 42x3
3x4 + 43x2

3x
2
4 − 42x3x

3
4.

But we can prove the positive semi-definiteness of T by using two rounds of
difference substitution. This means it can extend the D-PSD cone to approximate
the set of all positive semi-definite homogeneous symmetric polynomials by using
difference substitution successively.

Let’s use C to denote the cone of a round of difference substitution and C′ to
be the cone of two rounds of difference substitution. In the following calculation,
we will show the extension from C to C′.

In section 4, we get the extremal rays of S4
4 and mark them as

Q = [E1, E2, E3, E4, E5, E6, E7].

We construct a new homogeneous symmetric polynomial F (x1, x2, x3, x4)

F = (1 − m)E5 +
m

6
(E1 + E2 + E3 + E4 + E5 + E6),

where m is a parameter. If 0 ≤ m ≤ 1, it is easily proven that F ≥ 0, thus F is
contained in the current D-PSD cone. Since F is symmetric, so we can take the
difference operators

x1 = u1, x2 = u1 + u2,

x3 = u1 + u2 + u3, x4 = u1 + u2 + u3 + u4

and get a new polynomial F ′ whose coefficients comprise m. If these coefficients
are all non-negative, then the positive semi-definiteness of F is proven. So we can
suppose all coefficients are non-negative and conclude that the maximal value
of m is 60

59 . This means for every m ∈ [0, 60
59], F is positive since it is in D-PSD

cone. For m > 60
59 , F is excluded of current D-PSD cone.

If we continue to do difference substitution, we need consider all possible
orders between the variables since F ′ is asymmetric. There are 4! = 24 variable
orders. Suppose u1 ≤ u2 ≤ u3 ≤ u4, we take the new difference operators

u1 = v1, u2 = v1 + v2,

u3 = v1 + v2 + v3, u4 = v1 + v2 + v3 + v4,

70 L. Chen and Z. Zeng

into F ′ and get a polynomial G(v1, v2, v3, v4). Let the coefficients of G be non-
negative, then we can get the maximal value of m is 83700

80083 . By calculating all
24 variables orders, we get that the final maximal value of m is 30

29 . Through
two rounds of difference substitution, the positive semi-definiteness of F with
m ∈ (60

59 , 30
29] is proven while the D-PSD cone is extended to a larger one. However,

we now do not know what is the end point of expansion and topological structure
of the final D-PSD cone.

7 Conclusions

In this paper, we have presented a plain method called Difference Substitution
to verify the positive semi-definiteness of homogeneous symmetric polynomi-
als. Several examples highlight the importance of this method. The topological
structure of this method is proven as a finitely generated convex cone and the
extremal rays can be calculated with DevSubExp Algorithm or Chernikova’s Al-
gorithm. An example of S4

4 is also illustrated. Furthermore, our method can not
only take the place of Schur Partition to prove the positive semi-definiteness of
3-ary n-forms but also prove more with higher dimension or degree. Additionally,
the D-PSD cone is extended to a larger one, so as to prove more polynomials’
positive semi-definiteness.

More work is needed on the following points. Both DevSubExp Algorithm and
Chernikova’s Algorithm encounter the problem of combinational explosion. Par-
allel computation may calculate faster for some special polynomial inequalities
higher degrees or more variables. The extremal rays of extended D-PSD cone
and the transformation of extremal rays may be considered carefully.

Finally, we should indicate that the successive difference substitution method
we show in this paper is rather a heuristic one. We would like to express our
appreciation to one of the referees who kindly provided the following example

f(x, y) =
[
a · (x2 + y2) − (x + y)2

]2
,

whose positive semi-definiteness can not be verified by our method.

Acknowledgments. The work is supported in part by NKBRPC-2004CB318003
and NNSFC-10471044.

References

1. Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex analysis and optimization, pp.
25–45. Athena Scientific and Tsinghua University Press (2006)

2. Chen, S.L., Yao, Y.: Schur Subspace of Real Symmetric Forms and Application.
Acta Mathematica Sinica, Chinese Series 50, 1331–1348 (2007)

3. Chernikova, N.V.: Algorithm for finding a general formula for the non-negative
solutions of a system of linear equations. U.S.S.R Computational Mathematics
and Mathematical Physics 4, 151–158 (1964)

Which Symmetric Homogeneous Polynomials 71

4. Chernikova, N.V.: Algorithm for finding a general formula for the non-negative
solutions of a system of linear inequalities. U.S.S.R Computational Mathematics
and Mathematical Physics 5, 228–233 (1965)

5. Chernikova, N.V.: Algorithm for discovering the set of all the solutions of a linear
programming problem. U.S.S.R Computational Mathematics and Mathematical
Physics 8, 282–293 (1968)

6. Fernández, F., Quinton, P.: Extension of Chernikova’s algorithm for solving general
mixed linear programming problems, Technical Report 437, IRISA-Rennes, France
(1988)

7. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn., pp. 57–59. Cam-
bridge University Press, Cambridge (1952)

8. Huang, F.J., Chen, S.L.: Schur partition for symmetric ternary forms and readable
proof to inequalities. In: ISSAC 2005, Beijing, China, pp. 185–192 (2005)

9. Rabl, T.: Volume calculation and estimation of parameterized integer polytopes,
Diploma Thesis, Universität Passau, German (2006)

10. Wilde, D.K.: A library for doing polyhedral operations, Technical Report 785,
IRISA-Rennes, France (1993)

11. Verge, H.L.: A note on Chernikova’s algorithm, Technical Report 635, IRISA-
Rennes, France (1994)

12. Yang, L.: Solving harder problems with lesser mathematics. In: Ju, C., Korea, S.,
Chu, S.-C., et al. (eds.) ATCM 2005, pp. 37–46. ATCM Inc., Blacksburg (2005)

Basis-Independent Polynomial Division

Algorithm Applied to
Division in Lagrange and Bernstein Basis

Manfred Minimair�

Department of Mathematics and Computer Science
Seton Hall University, 400 South Orange Avenue

South Orange, New Jersey 07079, USA
manfred@minimair.org
http://minimair.org

Abstract. Division algorithms for univariate polynomials represented
with respect to Lagrange and Bernstein basis are developed. These algo-
rithms are obtained by abstracting from the classical polynomial division
algorithm for polynomials represented with respect to the usual power
basis. It is shown that these algorithms are quadratic in the degrees of
their inputs, as in the power basis case.

Keywords: polynomial division, Lagrange basis, Bernstein basis.

1 Introduction

Fundamental operations for polynomials represented with respect to bases other
than the usual power basis are being intensely studied. Examples include compu-
tation of resultants and resultant matrices [8,16,22], gcds [10,12,17], generalized
companion matrices [7,11,23,24], polynomial remainder sequences [6,14], and
polynomial division [1,5,19]. Carrying out fundamental operations over alterna-
tive bases is motivated by the desire to avoid computational cost and numeric
errors incurred by converting between different polynomial bases [9,15,20] and
practical applications [3,4].

The current paper studies division of univariate polynomials represented with
respect to the Lagrange basis as well as the Bernstein basis. Current algorithms
for polynomial division over these bases ([1,2] and respectively [19]) proceed by
setting up systems of linear equations for the coefficients of the quotient and re-
mainder. Then solutions are computed by respectively using SVD and LU factor-
ization. Since the sizes of these systems of equations are linear in the degrees of
the input polynomials and the solution methods require a worst-case cubic number
of arithmetic operations the worst-case complexity of these methods is expected
to be cubic. However, it is well-known that the worst-case complexity of divid-
ing polynomials represented with respect to the usual power basis is quadratic.

� Supported by the NSF grant CCF 0430741.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 72–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

manfred@minimair.org
http://minimair.org

Basis-Independent Polynomial Division Algorithm 73

For example, [21] shows that for polynomials represented in power basis division
by the classical division algorithm is O((n + 1)(m − n + 1)), where m and n re-
spectively is the degree of the dividend and divisor. Therefore there seems to be a
gap in the current theory. It seems that an appropriate generalization of the classi-
cal division algorithm that exhibits quadratic worst-case complexity for Lagrange
and Bernstein basis is lacking. The current paper addresses this gap by providing
a generalized division algorithm (Section 2) and by showing quadratic worst-case
complexities for the number of arithmetic operations required for division over
Lagrange (Theorem 15) and Bernstein (Theorem 26) basis.

Before we conclude this introductory section, we discuss some other related
works, besides [1,2,19]. The work [5] uses matrix techniques to divide polyno-
mials over orthogonal bases which obviously do not include the Lagrange and
Bernstein bases. Therefore these techniques seem not immediately applicable
to dividing polynomials over Lagrange and Bernstein basis. These techniques
are based on the Cayley-Hamilton Theorem and require generalized companion
matrices, the comrade matrices. But recently, some generalized companion ma-
trices over the Lagrange and Bernstein basis have been developed [11,23,24]. It
would be interesting to attempt to generalize the techniques from [5] to these
companion matrices. However it is not obvious if a resulting matrix-based divi-
sion algorithm would be of quadratic worst-case complexity. In the case of the
Bernstein basis it may even be doubtful because of the cost associated with com-
puting the generalized companion matrix [24]. Another approach for addressing
the problem of the current paper would be to efficiently convert the polynomi-
als into power basis [9,15,20], to apply some fast polynomial division algorithm
in power basis and to convert the result back into Lagrange or Bernstein basis.
However, this is not the focus of the current paper. The goal of the current paper
is to provide an algorithm that does not require basis conversion.

The paper is organized as follows. Section 2 provides a generalized (basis-
independent) framework for polynomial division. The following two sections, 3
and 4, apply the generalized framework to polynomials represented respectively
in Lagrange and Bernstein basis.

2 Basis-Independent Framework for Polynomial Division

The purpose of this section is to give a general framework, which is basis-
independent, for the well-known classical division algorithm for polynomials
given in power basis representation. In subsequent sections this framework will
be specialized in order to obtain division algorithms for polynomials in Lagrange
and in Bernstein basis.

2.1 Motivating Example

We divide the polynomial f0 by the polynomial g presented in power basis by
f0 = 6 x3 + 3 x2 + 12 x − 3 and g = 2 x + 1. When carrying out the division
we generate a sequence f1, f2, f3 where fi+1 is obtained from fi by removing the
leading term, that is,

74 M. Minimair

f1 = f0 − 3 x2 g = 0 x2 + 12 x − 3
f2 = f1 = 12 x − 3
f3 = f2 − 6 g = −9.

In this sequence each fi+1 has a smaller degree than its successor fi. Notice that
f1 and f3 are formed by subtracting multiples of g from f0 and respectively f2

such that the respective leading terms 6 x3 and 12 x vanish. In the case of f2 no
subtraction has to be carried out because 0 x2, the leading term of f1, contains
a vanishing coefficient. Moreover, the sequence of fi’s stops with f3 because the
degree of f3 is less than the degree of g. Obviously f3 is the remainder of f0

divided by g.
According to the sequence of fi’s we can also form a sequence of partial

quotients q1 = 3 x2, q2 = 0 x, q3 = 6. Then the quotient of f0 divided by g is the
sum q1 + q2 + q3 of the partial quotients.

So, what are the key operations needed for carrying out the division?

1. Extracting the coefficient of the leading term of a polynomial, e.g. when
forming f1 and f3. Subsequently, we will denote this operation with the
symbol Head.

2. Extracting the part of a polynomial minus the leading term, e.g. when form-
ing f2. Subsequently, we will denote this operation with the symbol Tail.

3. Multiple of g matching the degree of fi, e.g. x2 g. Subsequently, we will
denote this operation with the symbol Match.

4. Partial quotient, the multiplier for the operation Match, e.g. x2 for x2 g.
Subsequently, we will denote this operation with the symbol Quot.

2.2 Definition of Polynomial Division Algorithm

We define a polynomial division algorithm in a general setting independent from
the bases in which the polynomials are represented. The algorithms uses some
basic operators we define first.

Definition 1. For some field F , the symbol F [x]m denotes the F -vector space
of polynomials of degree up to m in the variable x. Moreover we let deg(0) = −1
and for m < 0 the symbol F [x]m denotes the (trivial) F -vector space {0}.

Definition 2. (Basic Operators)

Head: By Headm(f) we denote the coefficient of xm of the polynomial f in
F [x]m.

Tail: By Tailm we denote a function that identically maps any polynomial f in
F [x]m of degree at most m − 1 into F [x]m−1.

Match: If f , g respectively is a polynomial of degree m and n, with n ≤ m, then
Matchk(f, g) = q g for some polynomial q ∈ F [x]k of degree m − n ≤ k.

Quot: Quotk(f, g) denotes the factor q in the definition of Matchk(f, g).

The operator Tail in the above definition is important in computations. That
is, if f is represented with respect to some basis of F [x]m, then Tailm(f) is f
represented with respect to some basis of F [x]m−1.

Basis-Independent Polynomial Division Algorithm 75

In the above definition of the operator Match, the polynomial q is only speci-
fied up to degree. Later, it will be specified precisely as suitable for computations
in Lagrange and Bernstein basis. The objective of its definition will be to allow
to efficiently compute the product Matchm−n(f, g) = Quotm−n(f, g) · g. More-
over note that the operator Match only depends on the degree of f , not on its
coefficients. We included f in the definition rather than only its degree for the
sake of a clearer presentation.

The subsequent examples illustrate the definitions for polynomials represented
in the power basis {1, x, x2, x3, . . .}.

Example 3. For polynomials in power basis representation,

1. Headm(
∑m

k=0 ak xk) = am,
2. Tailm(0 · xm +

∑m−1
k=0 ak xk) =

∑m−1
k=0 ak xk,

3. Matchm−n(f, g) = xm−n g, where f , g respectively is of degree m and n,
4. Quotm−n(f, g) = xm−n.

Polynomial Division Algorithm

Input: polynomials f ∈ F [x]m and g ∈ F [x]n, where g had degree n ≤ m.
Output: the quotient Q and the remainder R of f divided by g

Let f0 = f . Generate sequences of polynomials fi and qi, for i = 1, . . . , m−n+1,
such that

fi+1 = Tailm−i(fi − Headm−i(fi)
Headm−i(Matchm−n(fi, g))

Matchm−n(fi, g)),

qi+1 =
Headm−i(fi)

Headm−i(Matchm−n(fi, g))
Quotm−n(fi, g).

Then Q = q1 + · · · + qm−n+1 and R = fm−n+1.

Remark 4. It can happen that Head(fi) = 0 (see the motivating example
above). In this case the definition of fi+1 simply is Tailm−i(fi) and respectively
qi+1 is zero.

2.3 Complexity of the Division Algorithm

We investigate the worst-case complexity of the number of arithmetic operations
required by the polynomial division algorithm.

For the remainder of this section we assume that the polynomials are rep-
resented appropriately in order to guarantee the expected linear complexity of
addition, subtraction and multiplication by a constant. This is obviously possible
if a polynomial in F [x]m is represented by the list of (m + 1) coefficients with
respect to a fixed basis. Therefore we make the following assumption.

Assumption 5. The polynomials f, g ∈ F [x]m are represented such that the
number of arithmetic operations needed for computing f ± g and c · f , for any
constant c, is O(m).

76 M. Minimair

Next we formulate some natural assumptions on the complexities for computing
the basic operators from Definition 2, which are satisfied for computations in
the standard power basis. Later we will investigate whether the basic operators
for the Lagrange and Bernstein bases fulfill these assumptions.

Assumption 6. The number of arithmetic operations needed for computing

Headm(f) is O(m), Matchk(f, g) is O(n),
Tailm(f) is O(m), Quotk(f, g) is O(k).

Theorem 7. Under Assumption 6 the number of arithmetic operations needed
for computing the quotient and remainder of f by g is O(m · (m − n + 1)).

Proof: Since the division algorithm generates m − n + 1 polynomials fi and qi.
It remains to check that the number of arithmetic operations is O(m) for each i.
Notice that by the definition of the operator Tail the degree of fi is at most m−i.
Therefore Head(fi)

Head(Matchm−n(fi, g)) is O(m). Thus computing fi+1 and qi+1 is O(m).
Furthermore, computing the sum in the quotient Q is O((m − n)(m − n + 1))
which is O(m · (m − n + 1)). �

Remark 8. By [21] division over the power basis is O(n · (m − n + 1)). Notice
that the left-hand factor only depends on n and not on m. This is due to being
able to retrieve the leading coefficient of a polynomial represented in power
basis in constant time. For Lagrange and Bernstein basis this operation is non-
constant, O(m). Hence we get the factor m in the complexity.

Next we prove the correctness of the division algorithm.

2.4 Correctness of the Division Algorithm

The sequence of fi’s satisfies the invariant fi = qi+1 g + fi+1. Thus f0 =
(
∑m−n+1

i=1 qi)g + fm−n+1. Since by the definition of the operator Tail the degrees
of the polynomials of the sequence fi are decreasing, the degree of fm−n+1 is less
than the degree of g. Therefore Q =

∑m−n+1
i=1 qi is the quotient of the division

of f0 by g and R = fm−n+1 is the remainder.

3 Division in Lagrange Basis

This section consists of three parts. The first part defines the basic operators
required for polynomial division (Definition 2). The second part derives the
complexity of the division algorithm. The third part proves the correctness of
the definitions.

3.1 Definition of Basic Operators

We start with the definition of the Lagrange basis.

Basis-Independent Polynomial Division Algorithm 77

Definition 9 (Lagrange basis). Let λj,m = πj,m

πj,m
where πj,m =

∏m
i=0
i	=j

(x − xi)

and πj,m =
∏m

i=0
i	=j

(xj − xi). Then λm,m, . . . , λ0,m are called the Lagrange basis

of degree m.

Definition 10. We define the head and tail operators as

Headm(
m∑

j=0

aj λj,m) =
m∑

j=0

aj

πj,m
,

Tailm(
m∑

j=0

aj λj,m) =
m−1∑

j=0

aj λj,m−1 .

Definition 11. We define the match and quot operators as

Matchk(f,
n∑

j=0

bj λj,n)) =
n∑

j=0

bj πj,m π−1
j,n λj,m,

Quotk(f,
n∑

j=0

bj λj,n)) =
u∑

j=0

πj,m π−1
j,n λj,k,

where f ∈ F [x]m and u = min(k, n), if m > n, and u = k, if m = n.

The essential properties of the match and quot operators are

Matchk(f, g) = Quotk(f, g) · g,

Quotk(f, g) =
m∏

i=n+1

(x − xi)

which will be shown in the section on the correctness of the operators below.
Notice that Quotk(f, g) has been chosen such that the product Quotk(f, g)·g =
Matchk(f, g) can be easily computed in the basis for F [x]m.

Next we give an example for polynomial division when using these operators.
We use the same polynomials as in Section 2.1.

Example 12. With x0 = 0, x1 = 1, x2 = 2, x3 = 3, let the polynomials
f0 = 222 λ3,3 + 81 λ2,3 + 18 λ1,3 − 3 λ0,3 and g = 3 λ1,1 + 1 λ0,1. Then

f1 = f0 − 3 (−2 x (x − 2) + 3 (x − 1)(x − 2)) g = f0 − 3 (2 λ1,2 + 6 λ0,2) g
= 81 λ2,2 − 21 λ0,2,

f2 = f1 − 15 (−(x − 1)(x − 2) + x(x − 2)) g = f1 − 15 (−1 λ1,2 − 2 λ0,2) g
= 45 λ1,1 + 9 λ0,1

f3 = f2 − 18 · 1 · g = f2 − 18 (λ2,2 + λ1,2 + λ0,2)g
= −9 λ0,0

78 M. Minimair

3.2 Complexity

We investigate the number of arithmetic operations required to carry out the
polynomial division algorithm. Before we state the main result, Theorem 15, we
give some auxiliary lemmas.

Lemma 13. The number of arithmetic operations required to compute

(π0,n, π0,n+1, . . . , π0,m), . . . , (πm,n, πm,n+1, . . . , πm,m) is O(m2). (1)

Proof: Since πj,i+1 = (xj −xi+1) ·πj,i, for j ≤ i or j > i+1 and πj,i+1 = πj,i,
for j = i + 1, computing πj,n, πj,n+1, . . . , πj,m is O(m) for each j = 0, . . . , m. �

Lemma 14. Given all required values of πj,i, the basic operators from Defini-
tions 11 and 10 satisfy Assumption 6.

Proof: The head operator requires computing the sum of aj

πj,m
for j = 0, . . . , m

which is O(m). Furthermore, the tail operator is O(1).
The match and quot operators require computing π−1

j,m πj,n either for indices
j = 0, . . . , min(k, n) for Quotk(f, g) and for j = 0, . . . , n for Matchk(f, g), where
g ∈ F [x]n, which is O(k) and respectively O(n). Moreover Matchk(f, g) requires
computing (π−1

j,m πj,n) · bj for j = 0, . . . n which is O(n). Thus Matchk(f, g) and
Quotk(f, g) respectively is O(n) and O(k). �
Now we are ready to show the complexity of division.

Theorem 15. The number of arithmetic operations required for division in the
Lagrange basis is O(m2).

Proof: We observe that Matchk(f,
∑n

j=0 aj λj,n), Quotk(f,
∑n

j=0 bj λj,n) and
Headm(

∑m
j=0 aj λj,m) require the constants πj,n and πj,m, for j = 0, . . . , m.

Thus, considering n ≤ m, by Lemma 13, and Theorem 7, the division algorithm
is O(m2 + m (m − n + 1)) which is O(m2). �

3.3 Correctness

We prove the correctness of the definitions of the basic operators in the previous
section. The correctness follows from two theorems, 16 and 19, which respectively
verify the defining properties of the head/tail and match/quot operators.

Theorem 16. If
∑m

j=0
aj

πj,m
= 0 then

∑m
j=0 aj λj,m =

∑m−1
j=0 aj λj,m−1 .

Furthermore,
∑m

j=0
aj

πj,m
is the coefficient of xm in the polynomial

∑m
j=0 aj λj,m.

The right-hand side of the above equality is used to define the tail operator and
that the coefficient of xm is returned by the head operator.

Proof: Notice that the leading coefficient of λj,m is 1
πj,m

. Therefore the co-
efficient of xm in f =

∑m
j=0 aj λj,m is

∑m
j=0

aj

πj,m
. If
∑m

j=0
aj

πj,m
= 0 then

the degree of f is at most m − 1. In this case m interpolation points, say,

Basis-Independent Polynomial Division Algorithm 79

(x0, a0), . . . , (xm−1, am−1) are sufficient to determine f . Therefore, we get f =∑m−1
j=0 aj λj,m−1 . �

Before proving the next theorem we give some auxiliary lemmas.
The following observation allows us to relate λj,m to λj,n.

Lemma 17. λj,m =
∏m

i=n+1 (x − xi) π−1
j,m πj,n λj,n if m ≥ n and j ≤ n.

Proof: For j ≤ n,

λj,m = π−1
j,m

n∏

i=1
i	=j

(x − xi)
m∏

i=n+1

(x − xi) = π−1
j,m πj,n

m∏

i=n+1

(x − xi) λj,n .

�
The next lemma allows us to write the factor from Lemma 17 that relates λj,m

to λj,n in terms of the Lagrange basis.

Lemma 18
m∏

i=n+1

(x − xi) =
u∑

j=0

πj,m π−1
j,n λj,k,

where u = min k, n, if 0 < m − n ≤ k, and u = k, if m = n.

Proof: Interpolating
∏m

i=n+1 (x − xi) for x = x0, . . . , xk, yields

m∏

i=n+1

(x − xi) =
k∑

j=0

(
m∏

i=n+1

(xj − xi)) λj,k .

In the trivial case of m = n the products for i ranging from n + 1 to m are
1, and thus the lemma holds for this case. So, let us assume the other case
0 < m − n ≤ k. Observe that

∏m
i=n+1 (xj − xi) = 0 for j ≥ n + 1. Therefore,

m∏

i=n+1

(x − xi) =
min(k,n)∑

j=0

(
m∏

i=n+1

(xj − xi)) λj,k .

Furthermore, for j ≤ n,

m∏

i=n+1

(xj −xi) =
m∏

i=n+1

(xj −xi) ·

∏n
i=1
i	=j

(xj − xi)
∏n

i=1
i	=j

(xj − xi)
=

∏m
i=1
i	=j

(xj − xi)
∏n

i=1
i	=j

(xj − xi)
=

πj,m

πj,n
.

�
The following theorem determines a multiple of a polynomial represented in
Lagrange basis. This multiple is denoted by the operator Match and the factor
by the operator Quot in the division algorithm.

80 M. Minimair

Theorem 19
n∑

j=0

bj πj,m π−1
j,n λj,m = (

u∑

j=0

πj,m π−1
j,n λj,k) (

n∑

j=0

bj λj,n),

where u = min(k, n), if 0 < m − n ≤ k ≤ m, and u = k, if m = n.

Proof: The case m = n is obvious because the left factor on the right-hand side
of the equality is 1. So, let us consider the other case. By Lemmas 17 and 18,

(
min(k,n)∑

j=0

πj,m π−1
j,n λj,k) (

n∑

j=0

bj λj,n) =
m∏

i=n+1

(x − xi) (
n∑

j=0

bj λj,n)

= (
n∑

j=0

bj

m∏

i=n+1

(x − xi) λj,n) = (
n∑

j=0

bj πj,m π−1
j,n λj,m).

�

4 Division in Bernstein Basis

This section consists of three parts. The first part defines the basic operators
required for polynomial division (Definition 2). The second part derives the
complexity of the division algorithm. The third part proves the correctness of
the definitions of the basic operators.

4.1 Definition of Basic Operators

We start with the definition of the Bernstein basis.

Definition 20 (Bernstein basis). Let βj,m =
(
m
j

)
xj (1 − x)m−j . Then the

polynomials βm,m, . . . , β0,m are called the Bernstein basis of degree m.

Definition 21. We define the head and tail operators as

Headm(
m∑

j=0

aj βj,m) =
m∑

j=0

(−1)m−j

(
m

j

)
aj ,

Tailm(
m∑

j=0

aj βj,m) =
m−1∑

j=0

(−1)j

(
j∑

i=0

(−1)i

(
m

i

)
ai

) (
m − 1

j

)−1

βj,m−1 .

Definition 22. We define the match and quot operators as

Matchk(f,
n∑

j=0

bj βj,n) =
n∑

j=0

bj

(
n

j

)(
m

j

)−1

βj,m,

Quotk(f,

n∑

j=0

bj βj,n) =
k−(m−n)∑

j=0

(
k − (m − n)

j

)(
k

j

)−1

βj,k .

Basis-Independent Polynomial Division Algorithm 81

The essential properties of the match and quot operators are

Matchk(f, g) = Quotk(f, g) · g,

Quotk(f, g) = (1 − x)m−n

which will be shown in the section on the correctness of the operators below.
Notice that Quotk(f, g) has been chosen such that the product Quotk(f, g)·g =
Matchk(f, g) can be easily computed in the basis for F [x]m.

Next we give an example for polynomial division when using these operators.
We use the same polynomials as in Section 2.1.

Example 23. Let

f = 18 β3,3 + 6 β2,3 + 1 β1,3 − 3 β0,3

g = 3 β1,1 + 1 β0,1

Then

f1 = f0 − 3 (1 − x)2 g = f0 − 3 β0,2 g = 18 β2,2 − 6 β0,2,
f2 = f1 − (−6) (1 − x) g = f1 − (−6) (1

2 β1,2 + β0,2) g = 18 β1,1,
f3 = f2 − 9 · 1 · g = f2 − 9 (β2,2 + β1,2 + β0,2) g = −9 β0,0 .

4.2 Complexity

We investigate the number of arithmetic operations required to carry out the
polynomial division algorithm. Before we state the main result, Theorem 26, we
give some auxiliary lemmas.

Lemma 24. The number of arithmetic operations required to compute all
(

i

j

)
, for j = 0, . . . , i and for i = min(m − n, n − 1), . . . , m (2)

is O(m2 − min(m − n, n − 1)2) .

Proof: Since
(

i
j+1

)
= i!

(i−j−1)! (j+1)! = i−j
j+1

(
i
j

)
, computing

(
i
0

)
, . . . ,
(
i
i

)
is O(i).

Thus computing
(

i
j

)
, for all j = 0, . . . , i and for all i = min(m − n, n − 1), . . . , m

is of order
∑m

i=min(m−n,n−1) i which is

O((m + min(m − n, n − 1))(m − min(m − n, n − 1) + 1)),

that is, O(m2 − min(m − n, n − 1)2). �

Lemma 25. Given all required values of
(

i
j

)
, the basic operators from Defini-

tions 22 and 21 satisfy Assumption 6.

Proof: The head operator requires computing the sum of (−1)m−j
(
m
j

)
aj for

j = 0, . . . , m which is O(m). Moreover the tail operator requires computing the

82 M. Minimair

sum of (−1)j γj

(
m−1

j

)−1
for j = 0, . . . , m − 1, where γj =

∑j
i=0 (−1)i

(
m
i

)
ai.

Since γj+1 = γj + (−1)j+1
(

m
j+1

)
aj+1, computing the head operator is O(m).

Given the constants
(

i
j

)
the operator Quotk(f,

∑n
j=0 bj βj,n) is of complex-

ity O(k − (m − n)), which is O(k), and the operator Matchk(f,
∑n

j=0 bj βj,n)

requires computing aj

(
n
j

) (
m
j

)−1 for j = 0, . . . , n which is O(n). �

Now we are ready to show the complexity of division.

Theorem 26. The number of arithmetic operations required for division in the
Bernstein basis is

O(m2 − min(m − n, n − 1)2).

Proof: We observe that Quotk(f,
∑n

j=0 bj βj,n) requires
(
k−(m−n)

j

)
, for all j =

0, . . . , k − (m − n) and that Matchk(f,
∑n

j=0 bj βj,n) requires the constants
(
n
j

)

and
(
m
j

)
, for j = 0, . . . , n. Furthermore we observe that Headm(

∑m
j=0 bj βj,m)

and Tailm(
∑m

j=0 bj βj,m) require the constants
(
m
j

)
, for j = 0, . . . , m and

(
m−1

j

)
,

for j = 0, . . . , m−1. Thus overall the division algorithm requires the constants
(

l
j

)
,

for j = 0, . . . , l and for l = min(m − n, n − 1), . . . , m. Therefore Lemma 24
provides for all required constants.

Considering n ≤ m, by Lemmas 24, 25 and Theorem 7 the division algorithm
is of order m2 − min(m−n, n− 1)2 + (m+n) (m−n+1). This is equivalent to
O(m2−min(m − n,n − 1)2+m2− n2) which is O(m2 − min(m − n, n − 1)2). �

4.3 Correctness

We prove the correctness of the definitions of the basic operators in the previous
section. The correctness follows from two theorems, 32 and 29, which respectively
verify the defining properties of the head/tail and match/quot operators. Before
proving these theorems we give some auxiliary lemmas.

Lemma 27

xj−1 (1 − x)m−(j−1) = xj−1 (1 − x)(m−1)−(j−1) − xj (1 − x)m−j .

Proof: xj−1 (1 − x)m−(j−1)=xj−1 (1 − x)(m−1)−(j−1) · 1+xj−1 (1− x)m−j (−x).�

Lemma 28

xj (1 − x)m−j = (−1)m−j xm +
m−1∑

i=j

(−1)i−j xi (1 − x)(m−1)−i. (3)

Proof: Proof by induction on (m − j). For m − j = 0, that is, j = m, we have

xm (1 − x)0 = (−1)0 xm + 0.

Basis-Independent Polynomial Division Algorithm 83

Next we assume (3) and show (3) after replacing m − j with m − j + 1, that is,
after replacing j with j − 1. Thus we show

xj−1 (1 − x)m−(j−1) = (−1)m−(j−1) xm +
m−1∑

i=j−1

(−1)i−(j−1) xi (1 − x)(m−1)−i.

By Lemma 27 and by (3), we have

xj−1 (1 − x)m−(j−1) = xj−1 (1 − x)(m−1)−(j−1) − xj (1 − x)m−j =

xj−1 (1 − x)(m−1)−(j−1) − ((−1)m−j xm +
m−1∑

i=j

(−1)i−j xi (1 − x)(m−1)−i).

�

Theorem 29

m∑

j=0

aj βj,m =

⎛

⎝
m∑

j=0

(−1)m−j

(
m

j

)
aj

⎞

⎠xm

+
m−1∑

j=0

(−1)j

(
j∑

i=0

(−1)i

(
m

i

)
ai

) (
m − 1

j

)−1

βj,m−1 .

Furthermore,
∑m

j=0 (−1)j
(
m
j

)
aj is the coefficient of xm in

∑m
j=0 aj βj,m.

Proof: By Lemma 28,

m∑

j=0

aj βj,m =
m∑

j=0

aj

(
m

j

)⎛

⎝(−1)m−j xm +
m−1∑

i=j

(−1)i−j xi (1 − x)(m−1)−i

⎞

⎠

=
m∑

j=0

(−1)m−j

(
m

j

)
aj xm +

m∑

j=0

aj

(
m

j

)⎛

⎝
m−1∑

i=j

(−1)i−j xi (1 − x)(m−1)−i

⎞

⎠

=
m∑

j=0

(−1)m−j

(
m

j

)
aj xm +

m∑

j=0

m−1∑

i=j

(−1)i−j

(
m

j

)
aj xi (1 − x)(m−1)−i

=
m∑

j=0

(−1)m−j

(
m

j

)
aj xm +

m−1∑

j=0

m−1∑

i=j

(−1)i−j

(
m

j

)
aj xi (1 − x)(m−1)−i.

Next we change the order of summation in the last double sum. The summation
indices of the double sum are the solutions of the set of inequalities

0 ≤ j ≤ m − 1, 0 ≤ i ≤ m − 1, j ≤ i ≤ m − 1.

This set of inequalities is equivalent to

0 ≤ j ≤ m − 1, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ i.

84 M. Minimair

Therefore
∑m

j=0 aj βj,m equals

m∑

j=0

(−1)m−j

(
m

j

)
aj xm +

m−1∑

i=0

i∑

j=0

(−1)i−j

(
m

j

)
aj xi (1 − x)(m−1)−i

=
m∑

j=0

(−1)m−j

(
m

j

)
aj xm +

m−1∑

i=0

(−1)i

⎛

⎝
i∑

j=0

(−1)j

(
m

j

)
aj

⎞

⎠ xi (1−x)(m−1)−i

=
m∑

j=0

(−1)m−j

(
m

j

)
aj xm+

m−1∑

i=0

(−1)i

⎛

⎝
i∑

j=0

(−1)j

(
m

j

)
aj

⎞

⎠
(

m − 1
i

)−1

βi,m−1 .

Furthermore, we observe that
∑m

j=0 (−1)m−j
(
m
j

)
aj is the coefficient of xm in

the polynomial
∑m

j=0 aj βj,m because βi,m−1 is of degree m − 1. �

Next we study the match and quot operators. We start with some auxiliary
lemmas.

Lemma 30. βj,m =
(
m
j

) (
n
j

)−1
(1 − x)m−n βj,n if m ≥ n.

Proof: (1 − x)m−j = (1 − x)m−n (1 − x)n−j . �

Lemma 31. For k ≥ m − n

(1 − x)m−n =
k−(m−n)∑

j=0

(
k − (m − n)

j

)
xj (1 − x)k−j .

Proof:

(1 − x)m−n = (x + (1 − x))k−(m−n) (1 − x)m−n

=

⎛

⎝
k−(m−n)∑

j=0

(
k − (m − n)

j

)
xj (1 − x)k−(m−n)−j

⎞

⎠ (1 − x)m−n

=
k−(m−n)∑

j=0

(
k − (m − n)

j

)
xj (1 − x)k−j .

�
The next theorem determines a multiple of a polynomial represented in Bernstein
basis. This multiple is denoted by the operator Match and the factor by the
operator Quot in the division algorithm.

Theorem 32. For k ≥ m − n

n∑

j=0

aj

(
n

j

)(
m

j

)−1

βj,m = (
k−(m−n)∑

j=0

(
k − (m − n)

j

)(
k

j

)−1

βj,k) (
n∑

j=0

aj βj,n).

Basis-Independent Polynomial Division Algorithm 85

Proof: By Lemmas 30 and 31,

n∑

j=0

aj

(
n

j

)(
m

j

)−1

βj,m =
n∑

j=0

aj (1 − x)m−n βj,n

= (
k−(m−n)∑

j=0

(
k − (m − n)

j

)
xj (1 − x)k−j) (

n∑

j=0

aj βj,n).

�

5 Conclusion and Future Directions

The current work provided polynomial division algorithms over the Lagrange
and Bernstein basis of quadratic worst-case complexity. Future work may in-
clude studying if the computational complexities of the provided algorithms can
be improved further and extending the algorithms to multi-variate polynomial
division.

For practical applications it will be of interest to study numerical properties
of these algorithms because in practice computations are often performed with
floating point numbers. The case of Bernstein basis is particularly interesting.
That is, polynomials presented in Bernstein basis have been shown to be well
suited for stable numerical computations [13]. However, [18] has shown that
the classical polynomial division algorithm in power basis is numerically quite
unstable in certain cases.

References

1. Amiraslani, A.: Dividing polynomials when you only know their values. In:
Gonzalez-Vega, L., Recio, T. (eds.) Proceedings of Encuentros de Álgebra Com-
putacional y Aplicaciones (EACA) 2004, pp. 5–10 (2004),
http://www.orcca.on.ca/TechReports/2004/TR-04-01.html

2. Amiraslani, A.: New Algorithms for Matrices, Polynomials and Matrix Polynomi-
als. PhD thesis, University of Western Ontario, London, Ontario, Canada (2006)

3. Aruliah, D.A., Corless, R.M., Gonzalez-Vega, L., Shakoori, A.: Geometric applica-
tions of the bezout matrix in the lagrange basis. In: SNC 2007: Proceedings of the
2007 international workshop on Symbolic-numeric computation, pp. 55–64. ACM,
New York (2007)

4. Aruliah, D.A., Corless, R.M., Shakoori, A., Gonzalez-Vega, L., Rua, I.F.: Comput-
ing the topology of a real algebraic plane curve whose equation is not directly avail-
able. In: SNC 2007: Proceedings of the 2007 international workshop on Symbolic-
numeric computation, pp. 46–54. ACM Press, New York (2007)

5. Barnett, S.: Division of generalized polynomials using the comrade matrix. Linear
Algebra Appl. 60, 159–175 (1984)

6. Barnett, S.: Euclidean remainders for generalized polynomials. Linear Algebra
Appl. 99, 111–122 (1988)

7. Barnett, S.: Polynomials and linear control systems. Monographs and Textbooks
in Pure and Applied Mathematics, vol. 77. Marcel Dekker Inc., New York (1983)

http://www.orcca.on.ca/TechReports/2004/TR-04-01.html

86 M. Minimair

8. Bini, D.A., Gemignani, L., Winkler, J.R.: Structured matrix methods for CAGD:
an application to computing the resultant of polynomials in the Bernstein basis.
Numer. Linear Algebra Appl. 12(8), 685–698 (2005)

9. Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of
points. J. Complexity 21(4), 420–446 (2005)

10. Cheng, H., Labahn, G.: On computing polynomial GCDs in alternate bases. In:
ISSAC 2006, pp. 47–54. ACM, New York (2006)

11. Corless, R.: Generalized companion matrices in the lagrange basis. In: Gonzalez-
Vega, L., Recio, T. (eds.) Proceedings of Encuentros de Álgebra Computacional y
Aplicaciones (EACA 2004), pp. 317–322 (2004),
http://www.apmaths.uwo.ca/∼rcorless/frames/PAPERS/
PABV/EACA2004Corless.pdf

12. Diaz-Toca, G.M., Gonzalez-Vega, L.: Barnett’s theorems about the greatest com-
mon divisor of several univariate polynomials through Bezout-like matrices. J. Sym-
bolic Comput. 34(1), 59–81 (2002)

13. Farouki, R.T., Goodman, T.N.T.: On the optimal stability of the Bernstein basis.
Math. Comp. 65(216), 1553–1566 (1996)

14. Gemignani, L.: Manipulating polynomials in generalized form. Technical Report
TR-96-14, Università di Pisa, Departmento di Informatica, Corso Italia 40, 56125
Pisa, Italy (December 1996)

15. Goldman, R.: Pyramid Algorithms: A Dynamic Programming Approach to Curves
and Surfaces for Geometric Modeling, 1st edn. The Morgan Kaufmann Series in
Computer Graphics. Morgan Kaufmann, San Francisco (2002)

16. Mani, V., Hartwig, R.E.: Generalized polynomial bases and the Bezoutian. Linear
Algebra Appl. 251, 293–320 (1997)

17. Maroulas, J., Barnett, S.: Greatest common divisor of generalized polynomial and
polynomial matrices. Linear Algebra Appl. 22, 195–210 (1978)

18. Stetter, H.J.: Numerical polynomial algebra. Society for Industrial and Applied
Mathematics. SIAM, Philadelphia (2004)

19. Tsai, Y.-F., Farouki, R.T.: Algorithm 812: BPOLY: An object-oriented library of
numerical algorithms for polynomials in Bernstein form. ACM Transactions on
Mathematical Software 27(2), 267–296 (2001)

20. Vries-Baayens, A.: CAD product data exchange: conversions for curves and sur-
faces. PhD thesis, Delft University (1991)

21. Winkler, F.: Polynomial algorithms in computer algebra. In: Texts and monographs
in symbolic computation. Springer, Heidelberg (1996)

22. Winkler, J.R.: A resultant matrix for scaled Bernstein polynomials. Linear Algebra
Appl. 319(1-3), 179–191 (2000)

23. Winkler, J.R.: Properties of the companion matrix resultant for Bernstein poly-
nomials. In: Uncertainty in geometric computations. Kluwer Internat. Ser. Engrg.
Comput. Sci., vol. 704, pp. 185–198. Kluwer Acad. Publ., Boston (2002)

24. Winkler, J.R.: A companion matrix resultant for Bernstein polynomials. Linear
Algebra Appl. 362, 153–175 (2003)

http://www.apmaths.uwo.ca/~rcorless/frames/PAPERS/
PABV/EACA2004Corless.pdf

Computing the Greatest Common Divisor of

Polynomials Using the Comrade Matrix

Nor’aini Aris and Shamsatun Nahar Ahmad

Department of Mathematics, Faculty of Science
Universiti Teknologi Malaysia, Malaysia

noraini@mel.fs.utm.my
http://www.matematik.utm.my/

Abstract. The comrade matrix of a polynomial is an analogue of the
companion matrix when the matrix is expressed in terms of a general
basis such that the basis is a set of orthogonal polynomials satisfying the
three-term recurrence relation. We present the algorithms for computing
the comrade matrix, and the coefficient matrix of the corresponding lin-
ear systems derived from the recurrence relation. The computing times of
these algorithms are analyzed. The computing time bounds, which dom-
inate these times, are obtained as functions of the degree and length of
the integers that represent the rational number coefficients of the input
polynomials. The ultimate aim is to apply these computing time bounds
in the analysis of the performance of the generalized polynomial greatest
common divisor algorithms.

Keywords: comrade matrix, orthogonal polynomials, three-term recur-
rence relation, greatest common divisor of generalized polynomials.

1 Introduction

Problems involving polynomials such as polynomial greatest common divisor
(GCD) computation and polynomial factorization, provide the basis for many
applications in symbolic computations and are important in many areas of con-
temporary applied mathematics. In the theory of linear multivariable control
systems, polynomial GCD determination arises in the computation of Smith
form of a polynomial matrix and problems associated with the minimal realiza-
tion of a transfer function matrix.

We consider the problem of computing the GCD of two polynomials

a(x) = a0p0(x) + a1p1(x) + ... + anpn(x) , (1)
b(x) = b0p0(x) + b1p1(x) + ... + bmpm(x) . (2)

with coefficients over any field, represented in a basis of orthogonal polynomials
{pi(x)}n

i=0 defined by the three-term recurrence relation:

p0(x) = 1,

p1(x) = α0x + β0,

pi+1(x) = (αix + βi)pi(x) − γipi−1(x) . (3)

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 87–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.matematik.utm.my/

88 N. Aris and S.N. Ahmad

for i = 1, 2, .., n − 1 with αi > 0, γi, βi ≥ 0. We can assume without loss of
generality that m < n. The associated comrade matrix (see [4]) is given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β0
α0

1
α0

. . . 0 0
γ1
α1

−β1
α1

1
α1

0 0
0 γ2

α2

−β2
α2

1
α2

. 0
...

...
...

...
...

0 0 0 0 1
αn−2

−a0
anαn−1

. −an−3
anαn−1

−an−2+anγn−1
anαn−1

−an−1−anβn−1
anαn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

has a(x) of the form (1) as its characteristic polynomial.
There has been considerable work on manipulation of polynomials represented

in the generalized form. Barnett made used of the congenial matrix generaliza-
tions in order to give procedures for computing GCDs [3] and later division [6].
Our aim is to implement the theories and analytical results in [3], [5] by comput-
ing the GCDs in exact arithmetic environments. Rahman [2] investigates into
the GCD of polynomials in the generalized form in floating point environment,
applying the numerical results to solving polynomials exhibiting repeated roots.
Although the method developed shows potential, as expected, the build up of
rounding errors is so enormous as to render effective results for high degree poly-
nomials. However, in the exact arithmetic environment, the modular approach
can be applied to handle the problem of coefficient growth when manipulating
with high degree monic polynomials having rational number cofficients involv-
ing multiprecision integers (as of polynomials in Legendre bases), which form
the entries of the comrade matrix. The promising success of modular techniques
in solving exact solutions for dense systems of linear equations indicated in[12]
suggests an investigation on its application to Barnett’s procedure.

The basic technique of converting to and from the standard form polynomials
involves solving a system of linear equations. Barnett’s procedure also involves
solving systems of linear equations simultaneously, which at the same time leads
to finding the actual solutions. Apart from that, by adhering to polynomials in
the original form, the properties that have been derived for polynomials in these
nonstandard bases can be applied and investigated. For example, Labahn and
Cheng [10] generalized the well known subresultant GCD and the modular GCD
algorithms of the standard form polynomials to polynomials in terms of Newton
bases or orthogonal bases, which are also known as the alternate bases. In this
work we apply the comrade matrix, which is a generalization of the companion
matrix applied to computing the GCD of polynomials in terms of the orthogonal
bases.

2 General Procedure and Related Work

Let a(x) and b(x) be two polynomials satisfying the relation [3], with deg (a(x)) ≥
deg (b(x)). The method of finding gcd (a(x), b(x)) using the comrade matrix can
be outlined by the following procedure:

Computing the GCD of Polynomials Using the Comrade Matrix 89

1. Construct the comrade matrix associated with a(x).
2. Construct the coefficient matrix of the corresponding systems of equations

obtained from a recursive equation derived from (3).
3. Reduce the coefficient matrix obtained from step 2 to its reduced echelon

(RE) form and compute the coefficients of the GCD from the last row of the
reduced matrix.

In [1], we describe the modular and non modular algorithms for computing
the GCD of polynomials using the above procedure. With the bound of the true
solution not known a priori, we have devised a way of detecting an unlucky re-
duction and construct a termination criterion, as given in [13], which is necessary
for constructing an effective and efficient modular algorithm. Rahman and Aris
[1] illustrates the efficiency of the modular algorithm in computing the GCD of
two polynomials in the Legendre basis. The computing time takes only seconds
when the degree bound for a(x) is 100 and the coefficient bound 153 decimal
digits.

In this paper the subalgorithms involved in the computations of the comrade
matrix and the construction of its corresponding system of linear equations de-
scribed in step 1 and 2 above are given in detail so that a detail analysis of their
theoretical computing times can be conducted. The results of the analysis will be
further applied to study the performance of the entire modular GCD algorithms.

3 The GCD of Generalized Polynomials

Let

d̃(x) = d̃0 + d̃1x + ... + xk,

= d0p0(x) + d1p1(x) + ... + pk(x) , (5)

be the monic GCD of a(x) and b(x) of the form (1) and (2) respectively, such
that n = deg a(x) ≥ deg b(x) = m. If A is the comrade matrix given by (4),
define

b(A) = b0I + b1p1(A) + ... + bmpm(A), (6)

then it is known that k = n − rank(b(A)). Using the defining relation (3), we
obtain the rows in terms of the comrade matrix and the recurrence relation

r0 = (b0, ..., bn−1),
r1 = r0(α0A),
ri = ri−1(αi−1A + βi−1I) − γi−1ri−2 . (7)

for i = 2, ..., n − 1.

Theorem 1. [4] For i = 1, 2, ..., n let ci be the ith column of b(A) in (6). The
columns ck+1, ..., cn are linearly independent and the coefficients d0, ..., dk−1 in
(5) are given by:

ci = di−1ck+1 +
n∑

k+2

xijcj i = 1, 2, ..., k for some xij . (8)

90 N. Aris and S.N. Ahmad

4 Computing Time Analysis

We adopt the convention of dominance relation which was introduced in the
analysis of the computing time of the polynomial resultant calculation and is
further elaborated in [9]. An exposition of dominance and codominance and
its application in determining the computing time analysis of the Euclidean
algorithm is given in [8]. The notation have subsequently been adopted by several
authors, as in [11] and [7]. Assuming classical matrix addition and multiplication,
we apply the results on the computing time for the rational number product,
sum, quotient and negative, denoted by the algorithms RNPROD, RNSUM,
RNQ and RNNEG respectively, which are analyzed in [8], [9] and [14].

Let P be the set generalized polynomials relative to an orthogonal basis
(pi(x))n

i=0 and decompose P into classes of polynomials with rational coeffi-
cients whose numerators and denominators are bounded by the integers u and
v respectively. This defines the class,

P(u, v, n, (pi)n
i=0) = {a =

k∑

i=0

aipi(x) ∈ P : |num(ai)| ≤ u, 0 < den(ai) ≤ v,

� gcd(u, v) = gcd(num(ai), den(ai)) = 1 and k ≤ n} . (9)

where num and den is the numerator and denominator of ai.

5 Construction of the Comrade Matrix

The inputs for the algorithm CDEMOFP are the defining terms α, β, γ given
by (3), and the generalized polynomials a = (a0, ..., an−1, 1) = a(x) as of Sec-
tion 2. The output is the comrade matrix A ∈ M(n, n, Q). If aij = r/s ∈ Q
thenAi−1,j−1,0 = A[i − 1][j − 1][0] = r and Ai−1,j−1,1 = A[i − 1][j − 1][1] = s.

Algorithm CDEMOFP. /*The algorithm construct the comrade matrix (4)*/

begin
Step 1: set aij = 0 for each i = 1, ..., n and j = 1, ..., n.

for i = 0 to n − 1 and j = 0 to n − 1, do set Ai,j,0 = 0 and Ai,j,1 = 1
Step 2: assign the diagonal entries for rows 1 to n − 1

for i = 0 to n − 2 do
t ← RNQ(−bet(i + 1), alph(i + 1))
if t = 0 then continue; else Ai,i,0 ← t(1) and Ai,i,1 ← t(2)

Step 3: assign the entries for ai,i−1 for rows 2 to n − 1.
for i = 1 to n − 2 do

t ← RNQ(gamm(i + 1), alph(i + 1))
if t = 0 then continue; else Ai,i−1,0 ← t(1) and Ai,i−1,1 ← t(2)

Step 4: assign the entries for ai,i+1 for rows 1 to n − 1.
for i = 0 to n − 2 do

if alph(i + 1) = 0 then continue
else Ai,i+1,0 ← alph2(i + 1) and Ai,i+1,1 ← alph1(i + 1)

Computing the GCD of Polynomials Using the Comrade Matrix 91

Step 5: assign the entries for row n in columns j = 1 to n − 2
for j = 0 to n − 3 do

t ← RNQ(−a(j + 1), alph(n))
if t = 0 then continue; else An−1,j,0 ← t(1) and An−1,j,1 ← t(2)

Step 6: assign the entries an,n−1 and an,n.
for j = n − 2 to n − 1 do

if j = n − 2 then t ← RNQ(RNSUM(−a(j + 1), gamm(n)), alph(n))
if j = n − 1 then t ← RNQ(RNSUM(−a(j + 1), −bet(n)), alph(n))
if t = 0 then continue; else An−1,j,0 ← t(1) and An−1,j,1 ← t(2)

Step 7: convert array form to list form: A convert to comL
Step 8: output(comL)
end

Theorem 2. For the polynomials a and b in P(u, v, n, (pi)n
i=0) such that (pi) is

the set of Legendre basis, t+CDEMOFP(u, v, n) $ n2 +nL(u)+L(u)L(L(u))+L(v).

Proof. Step 1 involves copying n2 entries. Each entry comprises of two compo-
nents which are 0 and 1. Therefore t1 ∼ n2. Since t = 0 in step 2, t2 ∼ n.

tRNQ(γi, αi) ∼ 1.
∑n−2

i=1 tRNQ(γi, αi) $ n. For each 1 ≤ i ≤ n − 2, γi

αi
= i

2i+1 .
The total cost of copying the numerators and denominators of the entries of the
comrade matrix A(i, i − 1) for 1 ≤ i ≤ n − 2 is dominated by L(2n + 1) L(n).
t3 $ n + L(n) ∼ n.

For 0 ≤ i ≤ n − 2, 1
αi

= i+1
2i+1 . The cost of copying the numerators and

denominators equals
∑n−2

i=0 L(i+1)+
∑n−2

i=0 L(2i+1) ∼ L(2n−1) ∼ 1. Therefore,
t4 ∼ 1.

For 0 ≤ j ≤ n − 3, step 5 computes the values A(n − 1, j) = −aj

αn−1
. L(num

(−aj)) ≤ L(u) and L(den(−aj)) ≤ L(v). αn−1 = 2n−1
n . Let d = L(gcd(u, 2n−1)).

d ≤ L(2n−1) ∼ 1. Let e = L(gcd(v, n)). e ≤ L(n) ∼ 1. Therefore k = min(d, e) =
1. m = max(L(−aj), L(αn−1)) = L(u) and n = min(L(−aj), L(αn−1)) = 1. From
Theorem 2.4.10, pg 42 in [14], tRNQ(−aj, αn−1) $ L(u). For each 0 ≤ j ≤ n− 3,
the cost of copying the numerators and denominators of A(n−1, j) is dominated
by L(u). The total cost of all these operations repeated n − 3 times gives t5 $
nL(u).

Let x = −an−2 + γn−1, y = −an−1 − βn−1. tRNNEG(an−2) $ L(u) and
tRNSUM(−an−2, γn−1) $ L(u)L(L(u)). Since both the numerator and denomina-
tor of γn−1 is of L(1) and L(num(−an−2)) ≤ L(u), L(den(−an−2)) ≤ L(v). From
L(x) $ L(u)+L(v) and L(αn−1) = 1, gives tRNQ(x, αn−1) $ L(u)+L(v). The to-
tal cost in computing x

αn−1
is thus dominated by L(u)L(L(u))+L(v). Similarly we

obtain tRNNEG(an−1) $ L(u). Since βi = 0 for all i, tRNSUM(−an−1,−βn−1) ∼
L(u). From L(−an−1 − βn−1) ≤ L(u) + L(v), we obtain tRNQ(y, αn−1) $ L(u) +
L(v). So, the total cost of computing the values of y

αn−1
is dominated by L(u).

Now let a = u
v + n−1

n . L(x) ≤ L(a). a
αn−1

= nu+v(n−1)
v(2n−1) ≤ u+v

v . Therefore, the cost
of copying their numerator and denominator of x

αn−1
is dominated by L(u)+L(v).

The cost of copying the numerator and denominator of y
αn−1

is dominated by
L(u). This gives t6 $ L(u)L(L(u)) + L(v).

92 N. Aris and S.N. Ahmad

For 0 ≤ i ≤ n − 2 and 0 ≤ j ≤ n − 2, L(A(i, j)) ∼ 1. For 0 ≤ j ≤ n − 3,
L(A(n − 1, j)) ≤ L(u

v) = L(u).
From step 6, L(A(n− 1, n− 2)) ≤ L(u+v

v) $ L(u)+ L(v). Also L(A(n − 2, n−
1)) ≤ L(u

v) = L(u). Thus, t7 $ (n − 1)2 + nL(u) + L(v) ∼ n2 + nL(u) + L(v).
From steps 1 to 7, tCDEMOFP(u, v, n) $ n2+nL(u)+L(u)L(L(u))+L(v), from

which Theorem 2 is immediate.

6 The Coefficient Matrix

The algorithm CSFCDEM applies the recurrence relation (7) to construct the
coefficient matrix described in Theorem 1. The parameter lists for the inputs α, β
and γ are alph, bet, gamm respectively, b = (b0, ..., bm, ..., bn−1) for the polyno-
mial b(x) as of Section 2, and CMDE for the comrade matrix obtained from
Algorithm CDEMOFP.

Algorithm CSFCDEM. /*To construct the coefficient matrix by (7)*/

begin
Step 1: obtain the first row of coefficient matrix from b.

CS ← COMP(b, NIL)
Step 2: initializing and obtaining the second row of CS.

R01×n ← CS
R11×n ← MRNPROD(R01×n, MRNSPR(alph(1), CMDEn×n))
CS ← COMP(FIRST(R11×n), CS)

Step 3: apply recurrence equation for remaining rows of CS.
Step3a: composing ith row
for i = 3 to n do

Sn×n ← MRNSPR(alph(i − 1), CMDEn×n)
Tn×n ← MRNSPR(bet(i − 1), In×n)
U1×n ← MRNSPR(−gamm(i − 1), R01×n)
R1×n ← MRNSUM(MRNPROD(R11×n, MRNSUM(Sn×n, Tn×n)), U)
CS ← COMP(FIRST(R1×n), CS)
Step3b: initialization: to set R0 = R1
R0 ← NIL and R1 ← FIRST(R11×n) /*R1 in vector representation*/
for j = 1 to n do

R0 ← COMP(R1(j), R0) /*R0 is in vector representation*/
R0 ← INV(R0) and R01×n ← COMP(R0, NIL)
Step3c: to set R1 = R

(similar steps to Step 3b)
CS ← INV(CS)

Step4: integerize CS
Step5: sorting columns of CS to obtain CSNEW satisfying (8)
Step6: output(CSNEW)
end

The construction of algorithm CSFCDEM is based upon the recursive
equations:

R0 = (b0, ..., bm, bm+1 + .. + bn−1), (10)

Computing the GCD of Polynomials Using the Comrade Matrix 93

R1 = R0(α0A), (11)
Ri = Ri−1(αi−1A) − γi−1Ri−2 , (12)

for 2 ≤ i ≤ n − 1. In (10), bj = 0 for m < j ≤ n − 1 if m < n − 1. In (12), we
assume that βi = 0 for all i and is omitted from the equation. We begin by first
computing the length of Ri for each 0 ≤ i ≤ n − 1.

Lemma 1. Let the polynomials a and b be in P(u, v, n, (pi)n
i=0) such that (pi)

is the set of Legendre basis. Let A be the comrade matrix associated with a.
Referring to (10) - (12), L(Ri(j)) ≤ L(f(u,v)

g(v)) $ L(u) + L(v), for 0 ≤ i ≤ n − 1
and 1 ≤ j ≤ n where f and g are polynomials in the variables u or v with single
precision coefficients and with degree bound i + 1.

Proof. For 1 ≤ i, j ≤ n, let cij be the entries of the comrade matrix obtained from
algorithm CDEMOFP. But referring to steps 6 and 7 in the proof of Theorem 2,
L(cij) ≤ L(z) such that z = u+v

v . Considering the values of the numerators and
denominators that will contribute to the greatest possible length and replacing
an element of single precision with 1, we have for 1 ≤ j ≤ n, L(R0(j)) ≤ L(u

v)
and L(R1(j)) ≤ L(u

v ∗ z). For a fixed j, the function whose length dominates
L(R0(j)) and L(R1(j)) is a quotient of polynomials in u and v whose coefficients
of length 1 and has degree bounds 1 and 2 respectively. This gives L(R2) ≤ L(y)
such that y = u

v ∗ z2 + u
v , a quotient of polynomials in u and v with coefficient of

length 1 and degree bound equals to 3. Proceeding by induction, suppose that
for 1 ≤ j ≤ n, L(Rl−1(j)) ≤ L(x1) and L(Rl−2(j)) ≤ L(x2) such that

x1 =
fl−1(u, v)
gl−1(v)

, x2 =
fl−2(u, v)
gl−2(v)

, (13)

such that fl−k, gl−k, k = 1, 2, has single precision coefficients and degree bounds
equal to l and l−1 respectively. Then L(Rl)(j) ≤ L(y) such that y = x1∗z +x2.
Hence, y is of the form f(u,v)

g(v) , where the coefficients of f and g are single precision
integers with degree bound equals to l+1. Applying the properties of the length
of the nonzero integers, that is L(a ± b) $ L(a) + L(b), L(ab) ∼ L(a) + L(b) and
L(ab) ∼ bL(a), a ≥ 2 in the later, we then have for 0 ≤ i ≤ n−1, and 1 ≤ j ≤ n,
L(Ri(j)) $ L(u) + L(v) .

Theorem 3. Let a, b ∈ P(u, v, n, (pi)n
i=0) with (pi) the Legendre basis. Then

t+CSFCDEM(u, v, n) $ n3L2(u)(L(q) + L(r)) such that q = max(r, nL(v)) and r =
L(u) + L(v) .

Proof. Let t(V) be the computing time to compute the components of the vector
V and let the jth component of the vector V be denoted V (j). Let A = (aij) be
comrade matrix obtained from Algorithm CDEMOFP.

1. From L(bi) ≤ L(u), 0 ≤ i ≤ m, t1 $ mL(u).
2. t(R0) $ mL(u). To compute

t(R1) = tMRNSPR(α0, A) + tMRNPROD(R0, α0A),

94 N. Aris and S.N. Ahmad

(a) tMRNSPR(α0, A) =
∑n−1

i=1

∑n
j=1 tRNPROD(α0, aij) +

∑n
j=1 tRNPROD

(α0, anj) where L(aij) ∼ 1 for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n and
L(anj) $ L(u) + L(v) for 1 ≤ j ≤ n. Thus, tMRNSPR(α0A) $ n2 +
n(L(u) + L(v))L(L(u) + L(v)).

(b) Let 1 ≤ j ≤ n. R1(j) =
∑n

i=1 R0(i)α0aij , where t(R1(j)) is given by

n∑

i=1

tRNPROD(R0(i), α0aij)+
n−1∑

i=1

tRNSUM(R0(i)α0aij , R0(i+1)α0ai+1,j).

∀1 ≤ i ≤ n, tRNPROD(R0(i), α0aij) $ L2(u)L(L(u) + L(v)). ∀j, the total
cost of computing these products is dominated by nL2(u)L(L(u)+L(v)).
Taking L(R0(i)α0aij) $ L(u) + L(v), ∀i, j, tRNSUM(R0(i)α0aij , R0(i +
1)α0ai+1,j) $ {L2(u)+L2(v)}L(L(u)+L(v)). The cost of the n−1 sums
is dominated by n{L2(u) + L2(v)}L(L(u) + L(v)). Summing the cost for
all 1 ≤ j ≤ n, t(R1) $ n2{L2(u) + L2(v)}L(L(u) + L(v)).

3. For 1 ≤ i, j ≤ n, the respective length of Ri−1(j) and αi−1cij is dominated
by L(u) + L(v). For 2 ≤ i ≤ n − 1, we compute the cost of computing row
i + 1 given by the equation Ri = Ri−1αi−1A − γi−1Ri−2. For a fixed value
of i, the jth component of Ri is given by

Ri(j) =
n∑

k=1

Ri−1(k)αi−1akj − γi−1Ri−2(j)

The cost of computing
∑n

k=1 Ri−1(k)αi−1akj is dominated by n(L(u) +
L(v))2L(L(u)+ L(v)). L(

∑n
k=1 Ri−1(k)αi−1akj) ∼

∑n
k=1 L(Ri−1(k)αi−1akj)

$ n(L(u) + L(v)). L(γi−1Ri−2(j)) $ L(u) + L(v). Therefore,

tRNSUM(
n∑

k=1

Ri−1(k)αi−1akj ,−γi−1Ri−2(j))$n(L(u)+L(v))2L(L(u)+L(v)).

For each 2 ≤ j ≤ n − 1, the total cost of computing Ri(j) is dominated by
n2(L(u) + L(v))2L(L(u) + L(v)). It follows that the cost of computing the
vector Ri for 2 ≤ i ≤ n − 1 $ n3(L(u) + L(v))2L(L(u) + L(v)) = t′3

4. The integerization of CS in step 4 of algorithm CSFCDEM transforms the
rational number matrix CS to its row equivalent integer matrix CSNEW .
For each row i = 1 to n,
(a) find the integer least common multiple (Saclib ILCM) of the n denom-

inators of the n column elements. From Lemma 1, the denominators
of Ri(j) for 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, that will constitute the
maximum length of the elements of the comrade matrix is a polyno-
mial g(v) with single precision coefficients and degree, that is, dom-
inated by L(v). Suppose that at the first k − 2 iterations, we have
computed the LCM of the integers x1x2...xk−2 and xk−1 where xi con-
stitute the denominators of a certain row of A and suppose that the
LCM is of the maximum possible length, which is equal to x1x2...xk−1.
At the end of the k−1 iteration we compute the least common multiple,

Computing the GCD of Polynomials Using the Comrade Matrix 95

that is lcm(x1x2...xk−1, xk) = x1x2...xk−1xk

gcd(x1x2...xk−1,xk) , (refer to Theorem 1.4.8
in [14]). Applying the Euclidean algorithm to compute the GCD and
applying the results of Theorem 3 in [8], we have

tM(x1x2...xk−1, xk) ∼ kL2(v) (14)

and
tE(x1x2...xk−1, xk) $ kL2(v) (15)

where y = gcd(x1x2...xk−1, xk) and L(xi), L(y) $ L(v). Likewise, it can
be calculated from the results for the computing time of the classical
division algorithm [8], which gives tD(x1x2...xk, y) $ kL2(v). Thus, the
computing time for the n−1 iterations in computing the LCM of a row is
dominated by nL2(v). The computing time for n rows is then dominated
by n2L2(v).

(b) multiply the LCM of the denominators of row i with each of the ele-
ments in row i to integerize the row. Suppose that the LCM of a row is
x1x2...xn whose length is therefore dominated by nL(v). The length of
each numerator of A is dominated by L(u)+L(v). For each 1 ≤ i, j ≤ n,

tRNPROD(y, aij) $ n(L(u)+ L(v))L(v) ≤ ngth(max(L(u)+ L(v), nL(v)))

which gives a total cost of n3(L(u)+L(v))L(v)L(max(L(u)+L(v), nL(v))),
which in general is dominated by n4.

7 Concluding Remarks and Further Work

Two versions of the modular algorithms have been constructed and implemented
by integrating the modular approach from step 2 or step 3 of the procedure
described in Section 2. The results for the empirical implementations of these
algorithms (refer to [1]), reveal that the execution time for the application of
rational number arithmetic in CDEMOFP and CSFCDEM algorithms exceed
the execution time for the application of modular arithmetic in step 3, only
when the size of the GCD is sufficiently small. When the size of the GCD is
sufficiently big, the modular approach of reducing the systems coefficient matrix
to its RE form and computing the rational number solution is about the same
as the time taken for the rational number arithmetics in CDEMOFP and CSFC-
DEM algorithms. This suggests that a hybrid of rational number and modular
computations can be applied to its utmost advantage in constructing the most
efficient algorithm.

The empirical computing time results of the generalized polynomial GCD al-
gorithms presented in [1] can be further studied using the deterministic approach
to computing time analysis, as adopted in [8], [11] and [7]. A unified theoretical
and empirical computing time analysis can then be concluded for generalized
polynomial GCD algorithms.

96 N. Aris and S.N. Ahmad

Acknowledgements

The research is funded by the Fundamental Research Grant, RMC vot 71565,
Universiti Teknologi Malaysia. The authors wish to express his gratitude to
George Collins for some useful assistance on the implementations of SACLIB
and providing some useful references on the theoretical computing time analysis
of algorithms. An appreciation is also due to A.A. Rahman and the the referees
of ASCM 2007 for some very useful comments and suggestions.

References

1. Rahman, A.A., Aris, N.: The State of the art in Exact polynomial GCD computa-
tions. In: Proceedings Malaysian Science and Technology Conference (2002)

2. Rahman, A.A.: The use of GCD computation to remove repeated zeroes from a
floating point polynomial. In: Proceedings SCAN 1992, Oldedenberg, Germany
(1992)

3. Barnett, S.: A companion matrix analogue for orthogonal polynomials. Linear Al-
gebra and its Applications 12, 197–208 (1975)

4. Barnett, S., Maroulas, J.: Greatest common divisor of generalized polynomial and
polynomial matrices. Linear Algebra and its Applications 22, 195–210 (1978)

5. Barnett, S.: Polynomial and Linear Control Systems. Marcel Dekker, New York
(1983)

6. Barnett, S.: Division of generalized polynomials using the comrade matrix. Linear
Algebra and its Applications 60, 159–175 (1984)

7. Brown, W.S.: On Euclid’s algorithm and polynomial greatest common divisors
18(1), 478–504 (1971)

8. Collins, G.E.: The computing time of the Euclidean algorithm. SIAM Journal on
Computing 3(1), 1–10 (1974)

9. Collins, G.E., Mignotte, M., Winkler, F.: Arithmetic in basic algebraic domains:
Computing Suppl. 4, 189–220 (1982)

10. Labahn, G., Cheng, H.: On computing polynomial GCDs in alternate bases. In:
Proceedings ISSAC 2006, pp. 47–54 (2006)

11. McClellan, M.T.: The exact solution of systems of linear equations with polynomial
coefficients. J. ACM 20(4), 563–588 (1973)

12. McClellan, M.T.: A comparison of algorithms for the exact solutions of linear
equations. ACM Trans. Math. Software 3(2), 147–158 (1977)

13. Aris, N., Rahman, A.A.: On the division of generalized polynomials. Lecture Notes
Series On Computing, vol. 10, pp. 40–51. World Scientific Computing, Singapore
(2003)

14. Rubald, C.M.: Algorithms for Polynomials over a Real Algebraic Number Field.
University of Wisconsin: Ph.D. Thesis (1973)

Efficient Algorithms for Computing

Nœther Normalization

Amir Hashemi

1 Department of Mathematical Sciences, Isfahan University of Technology,
Isfahan 84156-83111, Iran

Amir.Hashemi@cc.iut.ac.ir
2 Inria-Salsa project/ Lip6-Spiral team, 104 Avenue du President Kennedy,

75016 Paris, France
Amir.Hashemi@lip6.fr

Abstract. In this paper, we provide first a new algorithm for testing
whether a monomial ideal is in Nœther position or not, without using its
dimension, within a complexity which is quadratic in input size. Using
this algorithm, we provide also a new algorithm to put an ideal in this
position within an incremental (one variable after the other) random lin-
ear change of the last variables without using its dimension. We describe
a modular (probabilistic) version of these algorithms for any ideal using
the modular method used in [2] with some modifications. These algo-
rithms have been implemented in the distributed library noether.lib [17]
of Singular, and we evaluate their performance via some examples.

1 Introduction

The aim of this paper is first to present a new simple algorithm to decide whether
a monomial ideal is in Nœther position or not. This algorithm has a complexity
which is quadratic in input size, and it does not need to use the dimension of
the ideal. Moreover, if the response is positive, it may return also the dimension
of the ideal without any more computation. We provide also a modular version
of this algorithm for any ideal in which we use a modular method for computing
the Gröbner bases with a high probability.

We provide also a new algorithm to put an ideal in Nœther position using the
above algorithms without using the dimension of the ideal. For this, it makes an
incremental (one variable after the other) random linear change of variables. The
computation of Gröbner bases by this strategy is less expensive than the case it
changes all the last variables in one step. Also, we show that for some examples
we do not need to put all the last variables (whose cardinal is the dimension of the
ideal) in generic position. These show that doing this computation incrementally
is more efficient than doing it in one step. All the results have been implemented
by author in the distributed library noether.lib [17] of Singular [16]. We com-
pare the performance of our algorithms with the functions NoetherPosition
(from library mregular.lib [5]) of Singular and noetherNormalization (from
library NoetherNormalization.m2) of Macaulay2 [14] via some examples.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 97–107, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

98 A. Hashemi

To explain our motivation on working on the notion of Nœther position,
let R be the polynomial ring K[x1, . . . , xn] over an arbitrary field K, and I
be an ideal of R which has dimension d. The ideal I is in Nœther position if
K[xn−d+1, . . . , xn] ↪→ R/I is an integral ring extension, i.e. the image in R/I of
xi for any i = 1, . . . , n − d is a root of a polynomial

Xs + g1X
s−1 + · · · + gs = 0

where s is an integer and g1, . . . , gs ∈ K[xn−d+1, . . . , xn] (see [11] for example).
This notion is used in affine ring theory, dimension theory, ring normalization
and primary decomposition (see [15] Chapter 3). For example, it was used by
Giusti et al. to compute the dimension of a variety (see [13]), by Krick and
Logar to compute the radical of an ideal (see [19]), by Lecerf to solve a system
of polynomial equations and inequations (see [18]) and by Bardet to bound the
complexity of Gröbner bases computation by Faugère’s F5 algorithm (see [3]).

Now, we give the structure of the paper. In Section 2, we present our algorithm
to decide whether a monomial ideal is in Nœther position or not. In Section 3,
we describe a modular algorithm to test whether a general ideal is in Nœther
position or not. In Section 4, we provide our algorithms to put an ideal in Nœther
position. In Section 5, we show the performance of our algorithms with the
existing algorithms of Singular and Macaulay2 via some examples. Section
6 presents our conclusions.

2 Nœther Position Test

In this section, we provide a new algorithm to decide whether a monomial ideal
is in Nœther position or not. This algorithm has a complexity which is quadratic
in input size, and it does not need the dimension of the ideal. Moreover, if the
answer is positive, it returns also the dimension of the ideal without any more
computation. For this, let us recall a Nœther position test from [6] and a lemma
to compute the dimension of a monomial ideal from [9] page 431.

Let R = K[x1, . . . , xn] be a polynomial ring over an arbitrary field K, and
J ⊂ R be a monomial ideal of dimension d (recall that the dimension dim(X)
of an ideal X is the dimension of the corresponding quotient ring).

Lemma 1 (Nœther position test). The following conditions are equivalent:

(1) J is in Nœther position.
(2) There exists ri ∈ N − {0} for any i = 1, . . . , n − d such that xri

i ∈ J .
(3) dim(J + 〈xn−d+1, . . . , xn〉) = 0.

Lemma 2. Let

M =
{
{xi1 , . . . , xit} ⊂ {x1, . . . , xn} | xi1 . . . xit /∈

√
J and |{i1, . . . , it}| = t

}

where |A| denotes the number of the elements of a set A. Then, dim(J) is equal
to max{|L| | L ∈ M}.

Efficient Algorithms for Computing Nœther Normalization 99

Algorithm 1. NP-test
Input: {m1, . . . , mk} a system of generators for a monomial ideal J ⊂ R
Output: The answer of “Is J in Nœther position?” and dim(J) if the answer is
positive
Tab := [0, . . . , 0] (zero vector of length n)
for i = 1, . . . , k do

j := the smallest integer � s.t. x� | mi

if there exists α s.t. mi = xα
j then

Tab[j] := 1
end if
if Tab[j] = 0 then

Tab[j] := −1
end if

end for
if there is j s.t. Tab[j] = −1 then

return “No”
end if
if there is j s.t. Tab[j] = 1 and Tab[j − 1] = 0 then

return “No”
end if
if Tab = [1, . . . , 1, 0, . . . , 0] (with d components equal to 0) then

return “Yes, and dimension= d”
end if

Using these lemmas, we describe an algorithm to test whether a monomial ideal
is in Nœther position or not.

Proof of algorithm. The termination of the algorithm is trivial. To prove its
correctness, we justify its answer in each case. Let d′ be the dimension of J .
Suppose that there exists an integer j such that Tab[j] = −1. Two cases are
possible: If j < n− d′ + 1 there is not any power of xj which belongs to J . Thus
J is not in Nœther position by Lemma 1(2). If j ≥ n−d′+1 then xj · · ·xn ∈

√
J

from definition of j, and thus if J is in Nœther position dim(J) < n−j+1 ≤ d′ by
Lemma 2 which is a contradiction. Therefore, in this case the response is “No”.
Now, suppose that there exists an integer j such that Tab[j] = 1 and Tab[j−1] =
0. This implies that J is not in Nœther position from Lemma 1(2) and definition
of notations. Finally, suppose that Tab = [1, . . . , 1, 0, . . . , 0] with d components
equal to 0. It is enough to prove (ad absurdum) that d = d′ by Lemma 1. If
xn−d+1 · · ·xn ∈

√
J there exists αi such that x

αn−d+1
n−d+1 · · ·xαn

n ∈ J . Therefore,
Tab[n − d + 1] = −1 from definition of notations which is a contradiction. This
follows that xn−d+1 · · ·xn /∈

√
J and thus the dimension of J is equal to d using

Lemma 2 and the fact that x1, . . . , xn−d ∈
√

J . ��

Remark 1. The integer d is the dimension of J if the answer of the algorithm is
“Yes” (see the proof of algorithm).

100 A. Hashemi

Theorem 1. The complexity of this algorithm is quadratic in kn.

Proof. One can easily see that the number of operations in the loop “For” is
kn2. Thus the complexity of the algorithm is quadratic in kn. ��

Example 1. There is a monomial ideal for which NP-test algorithm runs faster
than is-NP algorithm from library mregular.lib of Singular. For the monomial
ideals that the computation of the dimension is difficult, our algorithm is more
efficient than is-NP. For example, let J = 〈x0x1, x1x2, . . . , x48x49, x49x50〉 be a
monomial ideal of the ring Q[x0, . . . , x50] (see [8]). NP-test returns “No” in 0.1
sec. while is-NP returns “No” in 27 sec..

3 Modular Nœther Position Test

In this section, we describe a modular algorithm to test whether a general ideal
is in Nœther position or not. For this, we recall first Arnold’s method (with
some modifications) to find a “lucky” prime for computing the initial ideal of
the input ideal.

Let I = 〈f1, . . . , fk〉 be an ideal of the ring R = Q[x1, . . . , xn] where Q is
the field of rational numbers. We scale appropriately such that each fi is in
Z[x1, . . . , xn] with Z the ring of integer numbers. We consider the ideal Ip =
〈f̄1, . . . , f̄k〉 in the ring Zp[x1, . . . , xn] where p is a prime number.

Let us recall the definition of the degree reverse lexicographic ordering, denoted
by ≺, on the monomials of R. For this, we denote respectively by deg(m) and
degi(m) the total degree and the degree in xi of a monomial m. If m and m′ are
monomials, then m ≺ m′ if and only if the last non zero entry in the sequence
(deg1(m

′) − deg1(m), . . . , degn(m′) − degn(m), deg(m) − deg(m′)) is negative.
Thus we have xn ≺ xn−1 ≺ · · · ≺ x1. Let also in(f) ∈ R be the initial (greatest)
monomial of a polynomial f ∈ R with respect to ≺. Then, the initial ideal of I
is defined in(I) = 〈in(f) | f ∈ I〉.

To test whether a general ideal I is in Nœther position or not, it is wise to
test it on in(I) (see [6] Lemma 3.1). To compute in(I), we have to compute the
Gröbner basis of I. But during the computation of Gröbner basis (by the Buch-
berger algorithm), the coefficients of the intermediate polynomials may become
much too big and make the computation fail. Thus, an efficient way is to use
a modular method to compute in(I). For this purpose, Pauer [21] has defined
a Pauer lucky prime. A prime p is Pauer lucky for I if p does not divides any
leading coefficient of any polynomial in the reduced Gröbner basis of I. He has
proved that for such a prime p, we have in(I) = in(Ip). But, he did not pro-
vide any criterion for detecting a Pauer lucky prime. Thus, Arnold [2] (see also
[1]) has proposed an efficient method to find (with a high probability) such a
prime. For this, she has defined a Hilbert lucky prime, and she has proved that
it is equivalent to Pauer prime ([2] Theorem 5.13). Here, we recall a Hilbert lucky

Efficient Algorithms for Computing Nœther Normalization 101

prime with some modifications which simplifies its computation. Recall that the
Hilbert function of I ⊂ R is defined by:

HFI(t) = dimQ

(
R

I

)

≤t

where dimQ(R/I)≤t is the dimension of the set of the elements of degree at most
t of R/I as a Q-vector space. The Hilbert series of an ideal I is the following
power series:

HSI(t) =
∞∑

s=0

HFI(s)ts.

Definition 1. A prime number p is called Hilbert lucky for I if HSI = HSIp .

Arnold has proposed the same definition replacing the Hilbert series by the
Hilbert function. Our modification does not change the definition, but it allows
us to choose a Hilbert lucky prime more efficiently. To prove this claim, let us
recall the following proposition from [12] page 130.

Proposition 1. The Hilbert series of an ideal I has the form:

HSI(t) =
P (t)

(1 − t)d

where P is a polynomial such that P (1)
= 0 and d is the dimension of I.

To determine the relative Hilbert luckiness of two primes p and q, we define an
ordering on the Hilbert series of two ideals: Let d (resp. d′) be the dimension
of Ip (resp. Iq) and N (resp. N ′) be the numerator of HSIp (resp. HSIq). Then,
HSIp > HSIq if either d > d′ or if d′ = d the leading coefficient of N − N ′

is positive. In this case, we say that p is unlucky with respect to q. While by
Arnold’s criterion p is unlucky with respect to q if HFIp(t) > HFIq(t) for some
t. This criterion is equivalent to our criterion, but in general, Arnold’s criterion
needs more computation than our criterion because sometimes one has to do this
comparison up-to Hilbert regularity (the degree from which Hilbert function is
polynomial). For example, let m be an arbitrary positive integer. Let

I = 〈x2m+1, xy, ym+1, yzm〉

be an ideal of the ring R = K[x, y, z] where K is an infinite field. One can see
from Hilbert series of I that its Hilbert regularity is m. On the other hand,
Hilbert series of I may be computed by 24 = 16 operations (see [4] for example).
Thus, Hilbert luckiness of two primes may be computed with 32 operations using
our criterion while it needs at least 2m operations by Arnold’s criterion (see [1]).
So, for m enough big our method is more efficient.

When HSIp = HSIq , to be able to choose a more lucky prime between two
primes, we define an ordering on the initial ideals modulo the primes: in(Iq) >
in(Ip) if there exists a polynomial in the Gröbner basis of Iq which has a leading

102 A. Hashemi

term greater than that of its corresponding polynomial in the the Gröbner basis
of Ip. By [2] Theorem 5.6 if HSIp = HSIq , we choose (from p and q) the prime
which has the greater initial ideal.

We describe now an algorithm to find a Hilbert lucky prime. In this algorithm,
using the above criterion, we compare a candidate prime with the best Hilbert
lucky prime which has already been computed. In the beginning, we start by a
random prime number.

Algorithm 2. HLP
Input: I ⊂ R an ideal, p a (Hilbert lucky) prime number, Gp the Gröbner basis of
Ip with respect to ≺ and HSIp

Output: A Hilbert lucky prime q, Gröbner basis of Iq and HSIq

Flag:= 0
while Flag= 0 do

q := a random prime number
Gq := the Gröbner basis of Iq with respect to ≺
if HSIp > HSIq or (HSIp = HSIq and in(Iq) >= in(Ip)) then

Flag:= 1
end if

end while
return (q, Gq , HSIq)

Then, using this algorithm, we describe a p-adic algorithm to test (with a
high probability) whether a general ideal is in Nœther position or not.

Algorithm 3. MNP-test
Input: I ⊂ R an ideal
Output: The answer of “Is I in Nœther position?”
p := a random prime number
Gp := the Gröbner basis of Ip with respect to ≺
(q1, Gq1 , HSIq1

) :=HLP(I, p, Gp, HSIp)
(q2, Gq2 , HSIq2

) :=HLP(I, q1, Gq1 , HSIq1
)

while NP-test(in(Gq1))
= NP-test(in(Gq2)) do
Gq1 := Gq2

(q2, Gq2 , HSIq2
) :=HLP(I, q2, Gq2 , HSIq2

)
end while
return NP-test(in(Gq1))

Example 2. There is an ideal for which MNP-test algorithm runs faster than
NP-test and is-NP algorithm from library mregular.lib of Singular. Let I be
the ideal of cyclic 6-roots over Q. Then, MNP-test returns “Yes” in 2.1 sec. while
NP-test and is-NP could not return the answer in less than 12 hours.

4 Putting an Ideal in Nœther Position

In this section, using NP-test and MNP-test algorithms, we provide two incre-
mental and efficient algorithms to put an ideal in Nœther position. For this, we
recall first Nœther normalization lemma from [15] page 213.

Efficient Algorithms for Computing Nœther Normalization 103

Lemma 3 (Nœther normalization). Let I ⊂ K[x1, . . . , xn] be an ideal and
K be a field. Then there exist an integer s ≤ n and an isomorphism

φ : K[x1, . . . , xn] −→ A := K[y1, . . . , yn]

such that canonical map K[ys+1, . . . , yn] −→ A/φ(I), yi �−→ yi mod φ(I) is
injective and finite. Moreover, if K is infinite then φ can be chosen to be linear,
φ(xi) = ai,1y1 + · · · + ai,nyn with ai,j ∈ K.

Definition 2. A finite and injective map K[ys+1, . . . , yn] −→ A/φ(I) is called
a Nœther normalization of A/φ(I), and φ puts I in Nœther position.

This lemma states that an ideal can be put in Nœther position by a suitable
change of the variables. If the characteristic of K is zero, we show that for almost
all linear change of variables an ideal is in Nœther position. Let I ⊂ R be an
ideal of dimension d. For all Λ = (a1, . . . , aN) ∈ KN with N = nd − d(d − 1)/2,
denote by Λ(I) the result of the following substitution in I:

xn �→ xn+a1xn−1 + a2xn−2 + · · · + an−1x1

xn−1 �→ xn−1 + anxn−2 + · · · + a2n−3x1

...
xn−d+1 �→ xn−d+1 + aN−n+d+1xn−d+ · · · + aNx1

By [7] Theorem A.1, there exists a dense open Zariski subset U of AN
K such that

Λ(I) is in Nœther position for all Λ ∈ U .

Algorithm 4. NP
Input: I ⊂ R an ideal
Output: A set of linear maps φ such that φ(I) ⊂ R is in Nœther position
I ′ := the Gröbner basis of I with respect to ≺
if NP-test(in(I ′)) =”Yes” then

Return The ideal is already in Nœther position
end if
φ := {}
for i = n, . . . , 2 do

ψ := The map xi �−→ xi +ai,i−1xi−1+ · · ·+ai,1x1 with ai,j ∈ K a random element
φ := φ ∪ {ψ}
I ′ := the Gröbner basis of ψ(I ′) with respect to ≺
if NP-test(in(I ′)) =”Yes” then

Return φ
end if

end for

It is certain that if we do this change of variables in one step, it destroys the
possible sparsity and may therefore transform an easy problem in an intractable
one. Thus, as an interesting algorithmic issue, it is better to do it incrementally

104 A. Hashemi

(one variable after the other) than to do it in one step. This follows from the
fact that the computation of Gröbner bases by this strategy is less expensive
(see Section 5). Also, it is certain that the number of variables that one has to
change is at most the dimension of the input ideal (see Lemma 1). But, by this
strategy, this number may be strictly less than than the dimension of the ideal
(see Section 5 for some examples). Another technique is to verify if a permutation
of the variable could put the ideal in this position in the case that the input ideal
is not in Nœther position. For example, let I = 〈y2, z2〉 be an ideal of the ring
K[x, y, z]. Thus, for this ideal we do not need to change any variable, and only
the permutation x �−→ z, y �−→ y and z �−→ x could put I in Nœther position
(see Section 5 for more examples). Also, as the Gröbner basis of the input ideal
has to be computed for testing Nœther position (see Section 3), one could use it
to minimize the time of computation and the number of non-zero coefficients in
the change of variables.

We describe an algorithm to put an ideal in Nœther position by the above
techniques. Then, replacing NP-test by MNP-test, we can describe a modular
(probabilistic) algorithm to do this computation when K = Q.

5 Experiments and Remarks

We have implemented NP-test, HPL, MNP-test, NP and MNP algorithms with the
computer algebra system Singular (version 3-0-1), and they were distributed in
the library noether.lib [17] of this system. We choose Singular since it has many
functionalities needed related to a multivariate polynomial ring. Also, to be able
to compare our algorithms with the existing NoetherPosition function (from
library mregular.lib [5]) of Singular which is base on Bermejo et al.’s paper [6].

Table 1. Comparison of our algorithms with Singular and Macaulay2

MNP NP Singular Macaulay2

Example var dim ch var time ch var time ch var time ch var time

1 4 1 1 11.6 1 ∗322 1 ∞ ? ?
2 5 3 2 0.2 2 0.2 3 0.2 3 0.1
3 5 3 0 0.1 0 0.1 3 1 3 1.9
4 5 1 0 0.1 0 0.2 1 0.7 ? ?
5 5 1 1 ∗6228 1 ∞ 1 ∞ ? ?
6 6 3 3 0.7 3 1.8 3 3.4 ? ?
7 7 2 2 1.5 2 6.8 2 133.2 2 12.9
8 8 2 1 0.6 1 2.6 2 288.4 ? ?
9 9 3 3 0.4 3 0.6 3 1.4 ? ?
10 9 4 4 2.3 4 ∗1.8 4 13203.1 ? ?
11 10 1 1 34.8 1 ∗597 1 ∞ 1 ∗0.2
12 10 9 0 0.6 0 ∗0.1 9 130.2 0 0.1
13 11 5 5 0.8 5 2.4 5 29.7 ? ?
14 17 3 3 44.6 3 ∗190.6 3 12495.5 3 ∗9.6

Efficient Algorithms for Computing Nœther Normalization 105

We compare also our implementation with the function noetherNormalization
(from library NoetherNormalization.m2) of Macaulay2 [14] which is based on
Logar’s paper [20].

For this experiments, we use some examples from [10] and Posso list1. The re-
sults are shown in Table 1. All the computations are done over Q. The monomial
ordering is always degree reverse lexicographical ordering. In this table, Example
1 (Haas Example2) is the ideal 〈x8 + zy4 − y, y8 + tx4 − x, 64x7y7 − 16x3y3zt +
4y3z + 4x3t − 1〉 of the ring Q[x, y, z, t]. Examples 3, 4, 6, 7, 8, 9, 10, 11, 12, 14 are
respectively Macaulay, Cassou, Horrocks, Gerdt, Möller, Sturmfels/Eisenbud,
Butcher, Wang1, Shimoyama/Yokoyama and Gonnet Examples from [10]. Ex-
amples 2 and 5 are respectively Bronstein2 and Czapor Examples from Posso list.
Example 13 is the ideal 〈x0x1, x1x2, . . . , x9x10, x10x0〉 ⊂ Q[x0, . . . , x10] from [8].

In Table 1, column var (resp. dim and ch var) shows the number of variables
(resp. the dimension of the ideal and the number of variables that the algorithm
changes to put the ideal in Nœther position). The column time shows the timing
of computing. Timing is measured in seconds (with a precision of tenths of a
second) The symbol ∞ means more than 24 hours and the symbol ? indicates
that memory was exhausted (memory error message for Macaulay2 was: Too
many heap sections: Increase MAXHINCR or MAX-HEAP-SECTS) and it made
the computation fail. The symbol ∗ shows the timing which is important in
comparison with the other timings. Computations were conducted on a personal
computer with 3.2GHz, Intel Pentium 4 and 1024 MB memory under the Linux
operating system.

For Example 11, the reason for which the function noetherNormalization is
faster than NP is that the former makes the linear change in a space of dimension
1 while the later makes it in a space of dimension 9.

The experiments we made seem to show that these first implementations are
already very efficient. As one can see in Table 1, the comparison of the columns
time of NP and the others shows that doing an incremental (one variable after
the other) random linear change of variables makes the computation of Gröbner
bases less expensive than the case that we change all the last variables in one
step. Also, for some examples, we do not need to change any variable, and a
permutation of variables could put the ideal in Nœther position (in column of
ch var, we show this case by 0).

6 Conclusion

In this paper, we have presented first two algorithms NP-test and MNP-test to
test whether a given ideal is in Nœther position or not. NP-test is a deterministic
algorithm which has a quadratic complexity in input (a monomial ideal) size.
This algorithm does not use the dimension of the ideal. MNP-test algorithm
whose input ideal is a general ideal, uses a modular (probabilistic) algorithm to
compute the initial ideal and NP-test algorithm for Nœther position test. Then,
1 http://www-sop.inria.fr/saga/POL/BASE/3.posso/
2 http://www.math.tamu.edu/∼rojas/extreme.html

http://www-sop.inria.fr/saga/POL/BASE/3.posso/
http://www.math.tamu.edu/~rojas/extreme.html

106 A. Hashemi

we have presented two algorithms NP (using NP-test) and MNP (using MNP-test)
to put an ideal in such a position via an incremental random linear change of
variables. The advantages of these algorithms are: The computation of Gröbner
bases by this strategy is less expensive than the case that we change all the last
variables in one step. Also, for some systems of positive dimension we do not
need to change all the last variables. Finally, it does not use the dimension of
the ideal.

Acknowledgment

The results of this paper are from my Ph.D. thesis at university of Paris VI. I
would like to thank my advisor prof. Daniel Lazard for his very helpful com-
ments. This work was supported in part by the CEAMA, Isfahan University of
Technology, Isfahan 84156, Iran.

References

1. Arnold, E.A.: Computing Gröbner Bases with Hilbert Lucky Primes. PhD thesis,
University of Maryland (2000)

2. Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symbolic Com-
put. 35(4), 403–419 (2003)

3. Bardet, M.: Étude des systèmes algébriques surdéterminés: Applications aux codes
correcteurs et à la cryptographie. PhD thesis, Université Paris6 (2004)

4. Bayer, D., Stillman, M.: Computation of Hilbert functions. J. Symbolic Com-
put. 14(1), 31–50 (1992)

5. Bermejo, I., Gimenez, Ph., Greuel, G.-M.: mregular.lib. A Singular 3.0.1 distributed
library for computing the Castelnuovo-Mumford regularity (2005)

6. Bermejo, I., Gimenez, P.: Computing the Castelnuovo-Mumford regularity of some
subschemes of Pn

K using quotients of monomial ideals. J. Pure Appl. Algebra 164(1-
2), 23–33 (2001); Effective methods in algebraic geometry (Bath, 2000)

7. Bermejo, I., Gimenez, P.: Saturation and Catelnuovo-Mumford regularity. J. Alge-
bra 303, 592–617 (2006)

8. Bigatti, A.M., Conti, P., Robbiano, L., Traverso, C.: A Divide and Conquer algo-
rithm for Hilbert-Poincaré series, multiplicity and dimension of monomial ideals.
In: Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp.
76–88. Springer, Heidelberg (1993)

9. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. In: Undergraduate
Texts in Mathematics, 2nd edn. Springer, New York (1997); (An introduction to
computational algebraic geometry and commutative algebra)

10. Decker, W., Greuel, G.-M., Pfister, G.: Primary decomposition: algorithms and
comparisons. In: Algorithmic algebra and number theory (Heidelberg, 1997), pp.
187–220. Springer, Berlin (1999)

11. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. Grad-
uate Texts in Mathematics, vol. 150. Springer, New York (1995)

12. Fröberg, R.: An introduction to Gröbner bases, New York. Pure and Applied Math-
ematics. John Wiley & Sons Ltd., Chichester (1997)

Efficient Algorithms for Computing Nœther Normalization 107

13. Giusti, M., Hägele, K., Lecerf, G., Marchand, J., Salvy, B.: The projective Noether
Maple package: computing the dimension of a projective variety. J. Symbolic Com-
put. 30(3), 291–307 (2000)

14. Grayson, D.R., Stillman, M.E.: Macaulay 2 version 1.1. software system for research
in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/

15. Greuel, G.-M., Pfister, G.: A Singular introduction to commutative algebra.
Springer, Berlin (2002); With contributions by Olaf Bachmann, Christoph Lossen
and Hans Schönemann, With 1 CD-ROM (Windows, Macintosh, and UNIX)

16. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.0.3. A Computer Algebra
System for Polynomial Computations, Centre for Computer Algebra, University of
Kaiserslautern (2005), http://www.singular.uni-kl.de

17. Hashemi, A.: noether.lib. A Singular 3.0.3 distributed library for computing the
nœther normalization (2007)

18. Lecerf, G.: Computing the Equidimensional Decomposition of an Algebraic Closed
Set by means of Lifting Fibers. Journal of Complexity 19(4), 564–596 (2003)

19. Krick, T., Logar, A.: An algorithm for the computation of the radical of an ideal in
the ring of polynomials. In: Mattson, H.F., Rao, T.R.N., Mora, T. (eds.) AAECC
1991. LNCS, vol. 539, pp. 195–205. Springer, Heidelberg (1991)

20. Logar, A.: A Computational Proof of the Noether Normalization Lemma. In: Mora,
T. (ed.) AAECC 1989. LNCS, vol. 357, pp. 259–273. Springer, Heidelberg (1989)

21. Pauer, F.: On lucky ideals for Gröbner basis computations. J. Symbolic Com-
put. 14, 471–482 (1992)

 http://www.math.uiuc.edu/Macaulay2/
http://www.singular.uni-kl.de

Stability of GPBiCG AR Method

Based on Minimization of Associate Residual

Moe Thuthu1 and Seiji Fujino2

1 Graduate School of Information Science and Electrical Engineering
moethu@zeal.cc.kyushu-u.ac.jp

2 Research Institute for Information Technology,
Kyushu University, Japan
fujino@cc.kyushu-u.ac.jp

Abstract. GPBi-CG method is an attractive iterative method for the
solution of a linear system of equations with nonsymmetric coefficient
matrix. However, the popularity of GPBi-CG method has diminished
over time except for the minority. In this paper, we consider a new al-
gorithm based on minimization of the associate residual of 2-norm in
place of reconstruction of the algorithm. We refer to a method with
new algorithm as GPBiCG with Associate Residual (abbreviated as
GPBiCG AR) method. Moreover we will introduce preconditioned GP-
BiCG AR (abbreviated as P GPBiCG AR). Then, we will support that
GPBiCG AR and P GPBiCG AR methods yield safety convergence
through numerical experiments.

Keywords: GPBi-CG, GPBiCG AR, nonsymmetric coefficient matrix,
Associate Residual, precondition.

1 Introduction

Generalized Product Bi-Conjugate Gradient (abbreviated as GPBi-CG) method
[6] is an attractive iterative method for the solution of a linear system of equa-
tions with nonsymmetric coefficient matrix. However, the popularity of GPBi-
CG method has diminished over time except for the context of limited field of
analysis becuase of unstability of convergence rate. Therefore some versions of
GPBi-CG method which have stability of convergence compared with the origi-
nal GPBi-CG method has been proposed.

We proposed a safety variant (abbreviated as BiCGSafe) of Generalized Prod-
uct type Bi-CG method from the viewpoint of reconstruction of the residual
polynomial and determination of two acceleration parameters ζn and ηn [3]. It
embodied that a particular strategy for remedying the instability of convergence,
acceleration parameters are decided from minimization of the associate residual
of 2-norm [4]. However, we could not reveal the origin of instability of GPBi-CG
method because of reconstruction of the algorithm. Though both convergence
rate and stability of BiCGSafe method were improved, instability itself of GPBi-
CG method could not correspond directly to its algorithm.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 108–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Stability of GPBiCG AR Method 109

In this paper, we consider a new algorithm based on minimization of the
associate residual of 2-norm in place of reconstruction of the algorithm. We
refer to as GPBiCG with Associate Residual (abbreviated as GPBiCG AR)
method. Moreover we will introduce preconditioned GPBiCG AR (abbreviated
as P GPBiCG AR). After that, we will make verification of stability of the it-
erative method, and make it clear that the origin of instability of GPBi-CG
method corresponds to the two auxiliary vectors of the algorithm. We will sup-
port that GPBiCG AR and P GPBiCG AR methods yield safety convergence
through numerical experiments.

2 GPBi-CG and GPBiCG AR Methods

We consider iterative methods for solving a linear system of equations

Ax = b, (1)

where A ∈ RN×N is a given nonsymmetric matrix, and x, b is a solution vector
and right-hand side vector, respectively. When A is a large, sparse matrix which
arises from realistic problems, the efficient solution of (1) is substantially very
difficult. This difficulty has led to the development of a rich variety of generalized
CG type methods having varying degrees of success (see, e.g., [5]).

The bi-conjugate gradient (BiCG) method based of the Lanczos algorithm
is a crucial example of a generalized CG method. In many cases, the Lanczos
algorithm gives some of the fastest solution times and stability of convergence
among all generalized CG methods. The Lanczos algorithm, however, is known
to break down in some cases. In practice, the occurrence of breakdown can cause
failure to irregularly converge to the solution of (1). The fact that the Lanczos
algorithm performs well in some cases but fail in others heightens the need for
further insight and development of the Lanczos type iterative methods.

We note that the basic recurrence relations between Lanczos polynomials
Rn(λ) and Pn(λ) hold as follows:

R0(λ) = 1, P0(λ) = 1, (2)
Rn+1(λ) = Rn(λ) − αnλPn(λ), (3)
Pn+1(λ) = Rn+1(λ) + βnPn(λ), n = 1, 2, (4)

Then we can introduce the three-term recurrence relations for Lanczos polyno-
mial Rn(λ) only by eliminating Pn(λ) from (2)-(4) as follows:

R0(λ) = 1, R1(λ) = (1 − α0λ)R0(λ), (5)

Rn+1(λ) = (1 +
βn−1

αn−1
αn − αnλ)Rn(λ) − βn−1

αn−1
αnRn−1(λ), n = 1, 2, . . . (6)

Zhang [6] discovered that an often excellent convergence property can be
gained by choosing for acceleration polynomial Hn(λ) that is built up in the

110 M. Thuthu and S. Fujino

three-term recurrence form as polynomial Rn(λ) in (5) and (6) by adding suitable
undetermined parameters ζn and ηn as follows:

H0(λ) = 1, H1(λ) = (1 − ζ0λ)H0(λ), (7)
Hn+1(λ) = (1 + ηn − ζnλ)Hn(λ) − ηnHn−1(λ), n = 1, 2, (8)

The polynomial Hn(λ) satisfies Hn(0) = 1 and the relation as Hn+1(0)−Hn(0) =
0 for all n. Here we introduce an auxiliary polynomial Gn(λ) as

Gn(λ) :=
Hn(λ) − Hn+1(λ)

ζnλ
. (9)

By reconstruction of (6) using the acceleration polynomials Hn(λ) and Gn(λ),
we have the following coupled two-term recursion of the form as

H0(λ) = 1, G0(λ) = ζ0, (10)
Hn(λ) = Hn−1(λ) − λGn−1(λ), (11)
Gn(λ) = ζnHn(λ) + ηnGn−1(λ), n = 1, 2, (12)

Using these acceleration polynomials Hn(λ) and Gn(λ), Zhang’s discover led
to the generalized product-type methods based on Bi-CG method for solving
the linear system with nonsymmetric coefficient matrix. He refered as GPBi-CG
method [6]. However, the original Lanczos algorithm is also known to break
down or nearly break down in some cases. In practice, the occurrence of a
break down causes failure to converge to the solution of linear equations, and
the increase of the iterations introduce numerical error into the approximate
solution. Therefore, the convergence of the generalized product-type methods
is affected. Comparatively little is known about the theoretical properties of
the generalized product-type methods. The fact that the generalized product-
type methods perform very well in some cases but fail in other cases, moti-
vates the need for further insight into the construction of polynomials for the
product-type residual Hn+1(λ)Rn+1(λ). In a usual approach, acceleration pa-
rameters are decided from local minimization of the residual vector of 2-norm
||rn+1(:= Hn+1(λ)Rn+1(λ))||2, where Rn+1(λ) denotes the residual polynomial
of the Lanczos algorithm and Hn+1(λ) denotes the acceleration polynomial for
convergence. Instead, it embodies that a particular strategy for remedying the
instability of convergence. That is, the algorithm of GPBiCG AR method based
on local minimization of an associate residual a rn(:= Hn+1(λ)Rn(λ)) is written
as follows:

a rn = rn − ηnAzn−1 − ζnArn. (13)

Here rn is the residual vector of the algorithm. Matrix-vector multiplications of
Aun and Arn+1 are directly computed according to definition of multiplication of
matrix A and vector. On the other hand, Apn and Azn are computed using their
recurrence. In the algorithm of GPBiCG AR method, modification parts which
differ from the original GPBi-CG method are indicated with underlines. The
description of compute Aun means that multiplication of Aun is done according
to its definition.

Stability of GPBiCG AR Method 111

Algorithm 1. GPBiCG AR method

x0 is an initial guess, r0 = b − Ax0,

choose r∗
0 such that (r∗

0, r0) �= 0,

set β−1 = 0, compute Ar0,

for n = 0, 1, · · · until ||rn+1|| ≤ ε ||r0|| do :
begin

pn = rn + βn−1(pn−1 − un−1),
Apn = Arn + βn−1(Apn−1 − Aun−1),

αn =
(r∗

0, rn)
(r∗

0, Apn)
,

an = rn, bn = Azn−1, cn = Arn,

ζn =
(bn, bn)(cn, an) − (bn, an)(cn, bn)
(cn, cn)(bn, bn) − (bn, cn)(cn, bn)

,

ηn =
(cn, cn)(bn, an) − (bn, cn)(cn, an)
(cn, cn)(bn, bn) − (bn, cn)(cn, bn)

,

(if n = 0, then ζn =
(cn, an)
(cn, cn)

, ηn = 0)

un = ζnApn + ηn(tn−1 − rn + βn−1un−1),
compute Aun,

tn = rn − αnApn,

zn = ζnrn + ηnzn−1 − αnun,

Azn = ζnArn + ηnAzn−1 − αnAun,

xn+1 = xn + αnpn + zn,

rn+1 = tn − Azn,

compute Arn+1,

βn =
αn

ζn
· (r∗

0, rn+1)
(r∗

0, rn)
,

end

2.1 Preconditioned GPBi-CG and GPBiCG AR Methods

This section discusses the preconditioned GPBiCG AR (abbreviated as
P GPBiCG AR) and GPBi-CG (abbreviated as P GPBi-CG) methods. We
choose a matrix K (K ≈ A = K1K2) as a preconditioner, the following precon-
ditioned equation can be solved:

K−1Ax = K−1b (14)

or

Ãx̃ = b̃, (15)

112 M. Thuthu and S. Fujino

where Ã = (K−1
1 AK−1

2), x̃ = (K2x), (b̃ = (K−1
1 b) are defined. When GP-

BiCG AR method apply to the equation (2.15), the solution vector and residual
vector can be defined as follows:

x̃n := K2xn, r̃n := K−1
1 rn. (16)

The auxiliary vectors of GPBiCG AR method can be also defined as follows:

p̃n := K2pn, t̃n := K−1
1 tn,

ũn := K2un, z̃n := K2zn, r̃∗
0 := KH

1 r∗
0, (17)

where KH is Hermitian matrix. Then, P GPBiCG AR method is as follows:

Algorithm 2. Preconditioned GPBiCG AR method

x0 is an initial guess, r0 = b − Ax0,

Choose r∗
0 such that (r∗

0, r0) �= 0,

set β−1 = 0,

for n = 0, 1, · · · until ||rn|| ≤ ε ||r0|| do :
begin

pn = K−1rn + βn−1(pn−1 − un−1),
Apn = AK−1rn + βn−1(Apn−1 − Aun−1),

αn =
(r∗

0, rn)
(r∗

0, Apn)
,

K−1tn = K−1rn − αnK−1Apn,

an = rn, bn = Azn−1, cn = AK−1rn,

ζn =
(bn, bn)(cn, an) − (bn, an)(cn, bn)
(cn, cn)(bn, bn) − (bn, cn)(cn, bn)

,

ηn =
(cn, cn)(bn, an) − (bn, cn)(cn, an)
(cn, cn)(bn, bn) − (bn, cn)(cn, bn)

,

(if n = 0, then ζn =
(cn, an)
(cn, cn)

, ηn = 0)

un = ζnK−1Apn + ηn(K−1tn−1

−K−1rn + βn−1un−1),
compute Aun,

tn = rn − αnApn,

zn = ζnK−1rn + ηnzn−1 − αnun,

Azn = ζnAK−1rn + ηnAzn−1 − αnAun,

xn+1 = xn + αnpn + zn,

rn+1 = tn − Azn,

Stability of GPBiCG AR Method 113

compute Arn+1,

βn =
αn

ζn
· (r∗

0, rn+1)
(r∗

0, rn)
,

end

3 Numerical Experiments

3.1 Non Preconditioned GPBiCG AR and GPBi-CG Methods

In this section numerical experiments of non preconditioned GPBiCG AR and
GPBi-CG methods will be presented. We are primarily concerned with the GPBi-
CG by Zhang[6] and GPBiCG AR (with associate residual vector) methods.
All computations were done in double precision floating point arithmetics, and
performed on Hitachi SR11000 with CPU of Power5, clock of 1.9GHz, main
memory of 128GB, OS of AIX 5L 5.3. All codes were compiled with the “-64 -Oss
-nolimit -noscope -noparallel” optimization option. The right-hand side b was
imposed from the physical load conditions. The stopping criterion for successful
convergence of the iterative methods was less than 10−7 of the relative residual
2-norm ||rn+1||2/||r0||2. In all cases the iteration was started with the initial
guess solutions x0 are equal to all zeroes. The maximum number of iterations
was fixed as 104. The initial shadow residual r∗

0 of GPBiCG AR and GPBi-CG
methods was equal to the initial residual r0 = b − Ax0. We examined stability
of convergence of GPBiCG AR and GPBi-CG methods. As test matrices, 29
matrices in total were taken from Florida sparse matrix collection[2].

Table 1 shows the numerical results of GPBiCG AR and GPBi-CG methods.
”Itr.” means number of iterations, ”time” means computation time in seconds
and ”ratio” means the ratio of computation time of GPBiCG AR method to that
of GPBi-CG method. The symbol ”∞” denotes non-convergence until iterations
reach at the maximum iteration counts.

From Table 1, the following observations can be made.

1. As for matrices af23560 and lung2, GPBiCG AR method only converge. On
the contrary, GPBi-CG method does not converge until maximum iterations
because of stagnation of the residual.

2. For 11 matrices shown in Table 1, GPBiCG AR method converge faster
than GPBi-CG method. The time-ratios of GPBiCG AR method to GPBi-
CG method vary from 0.67 to 0.96. As a result, we can see that GPBiCG AR
method is fairly more efficient than GPBi-CG method.

3. However, for saga005 matrix shown in Table 1, both GPBiCG AR and GPBi-
CG methods can not converge.

4. For 15 matrices except the matrices shown in Table 1, computation times of
GPBiCG AR method are nearly as same as those of GPBi-CG method.

In Fig.1 we demonstrate history of relative residual 2-norm of GPBiCG AR
(solid line) and GPBi-CG (dotted line) methods for two matrices (a)af23560 and
(b)lung2.

114 M. Thuthu and S. Fujino

Table 1. Iterations and computation time in seconds of GPBiCG AR and GPBi-CG
methods

No. matrix GPBiCG AR GPBi-CG
Itr. time ratio Itr. time

1 cage12 9 0.22 0.96 9 0.23
2 xenon1 482 4.59 0.94 507 4.87
3 xenon2 572 22.42 0.94 599 23.97
4 wang4 366 0.84 0.93 380 0.90
5 memplus 565 1.01 0.92 605 1.10
6 torso2 24 0.33 0.92 25 0.36
7 stomach 197 6.87 0.90 213 7.67
8 sme3db 4205 78.58 0.79 5336 99.31
9 fidap035 889 2.10 0.77 1120 2.71

10 sme3da 4000 27.98 0.73 5467 38.35
11 ibm matrix 2 6051 53.06 0.67 8850 78.88

12 af23560 1915 7.85 ∞
13 lung2 4573 43.81 ∞
14 saga005

From Fig.1(a), it is clear that the relative residual of GPBi-CG method for
matrix af23560 oscillates violently around the residual level of 10−0.3 ∼ 10+0.3.
Moreover, from Fig.1(b), we can observe that the relative residual of GPBi-CG
method for matrix lung2 stagnates under the residual level of approximately
10−3.3. On the other hand, the relative residual of GPBiCG AR method con-
verges nicely for these matrices. As a result, we can verify the stability of con-
vergence of GPBiCG AR method compared with that of GPBi-CG method.

In Fig.2 we show history of relative residual 2-norm of GPBiCG AR and
GPBi-CG methods for two matrices (a)sme3da and (b)ibm matrix 2. Moreover
in Fig.3 we depict history of relative residual 2-norm of GPBiCG AR and GPBi-
CG methods for two matrices (a)sme3db and (b)fidap035. From these Figs.,
experimental results indicate that GPBiCG AR method realizes efficient and
safety convergence.

3.2 Preconditioned GPBiCG AR and GPBi-CG Methods

Basic computational conditions are the same with non preconditioned case in
the preceding subsection. In this subsection, we use acceleration coefficient γ to
raise approximation accuracy of P GPBiCG AR and P GPBi-CG methods.

Table 2 shows the numerical results of P GPBiCG AR and P GPBi-CG meth-
ods. The value of acceleration coefficient γ varies from 1.0 until 1.3 at the interval
of 0.01. That is, we examined 31 cases in total for each matrix. For fairness, we
show the average iterations and computation times in Table 2. Minimum it-
erations and computation times are also shown together in Table 2. ”No. of
conv.” means number of times for successful convergence of P GPBiCG AR
and P GPBi-CG methods. ”Minimum time” and ”Minimum itr.” mean com-
putation times in seconds and number of iterations when P GPBiCG AR and

Stability of GPBiCG AR Method 115

-8

-6

-4

-2

 0

 2

 0 500 1000 1500 2000

R
e
l
a
t
i
v
e

R
e
s
i
d
u
a
l

Iterations

af23560

GPBiCG-AR
GPBi-CG

-8

-6

-4

-2

 0

 2

 0 1000 2000 3000 4000 5000

R
e
l
a
t
i
v
e

R
e
s
i
d
u
a
l

Iterations

lung2

GPBiCG-AR
GPBi-CG

(a)matrix: af23560 (b)matrix: lung2

Fig. 1. History of relative residual 2-norm of GPBiCG AR (solid line) and GPBi-CG
(dotted line) methods for two matrices af23560 and lung2

-8

-6

-4

-2

 0

 2

 0 1000 2000 3000 4000 5000 6000

R
e
l
a
t
i
v
e

R
e
s
i
d
u
a
l

Iterations

sme3da

GPBiCG-AR
GPBi-CG

-8

-6

-4

-2

 0

 2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
e
l
a
t
i
v
e

R
e
s
i
d
u
a
l

Iterations

ibm-matrix-2

GPBiCG-AR
GPBi-CG

(a)matrix: sme3da (b)matrix: ibm matrix 2

Fig. 2. History of relative residual 2-norm of GPBiCG AR (solid line) and GPBi-CG
(dotted line) methods for two matrices sme3da and ibm matrix 2

-8

-6

-4

-2

 0

 2

 0 1000 2000 3000 4000 5000 6000

R
e
l
a
t
i
v
e

R
e
s
i
d
u
a
l

Iterations

sme3db

GPBiCG-AR
GPBi-CG

-8

-6

-4

-2

 0

 2

 0 500 1000 1500 2000

R
e
l
a
t
i
v
e

R
e
s
i
d
u
a
l

Iterations

fidap035

GPBiCG-AR
GPBi-CG

(a)matrix: sme3db (b)matrix: fidap035

Fig. 3. History of relative residual 2-norm of GPBiCG AR (solid line) and GPBi-CG
(dotted line) methods for two matrices sme3db and fidap035

116 M. Thuthu and S. Fujino

Table 2. Iterations and computation time of P GPBiCG AR and P GPBi-CG methods

No. matrix
P GPBiCG AR P GPBi-CG

No. of Average Minimum No. of Average Minimum
conv. itr. time itr. time conv. itr. time itr. time

1 cage12 31 3 0.92 3 0.92 31 3 0.92 3 0.91
2 lung2 31 4 0.23 3 0.22 31 4 0.23 3 0.21
3 stomach 31 6 1.72 5 1.61 31 5 1.67 5 1.61
4 ibm max 2 31 25 1.37 5 1.61 31 24 1.35 14 1.12
5 wang4 31 44 0.33 33 0.26 31 43 0.33 32 0.25
6 memplus 31 112 0.57 91 0.47 31 111 0.57 90 0.47
7 sme3da 31 575 9.87 505 8.80 31 670 11.50 520 9.13
8 sme3db 31 800 43.71 696 38.28 31 981 53.12 801 43.87

9 xenon1 30 313 9.19 125 3.96 30 321 9.72 126 4.08
10 xenon2 30 442 54.00 141 17.71 29 329 40.60 150 19.31
11 ex19 20 97 0.64 53 0.40 20 111 0.71 52 0.39
12 saga005 20 4491 150.57 4101 138.29 11 5875 197.96 4428 149.25
13 olafu 7 7533 119.63 5583 90.28 1 7020 114.44 7020 114.44

P GPBi-CG methods converge in the least time. 29 test matrices are taken
from Florida sparse matrix collection [2] which are the same with the preceding
subsection.

From Table 2, the following observations can be made.

1. For the eight matrices from the upper block, both P GPBiCG AR and
P GPBi-CG methods can converge well with 31 values of acceleration co-
efficient γ. These two methods converge nearly same time and iterations.
Then, for the five matrices from the lower block, these methods converge
sometimes. However, the numbers of convergence of P GPBiCG AR method
is more than that of P GPBi-CG method.

2. Moreover, P GPBiCG AR method converges 7 times for matrix olafu. The
average iterations and computation times of P GPBiCG AR method are
larger than that of P GPBi-CG method. Because P GPBiCG AR method
take too long time and much number of iterations to converge at acceleration
coefficient γ value of 1.08. However, the minimum iterations and computation
times of P GPBiCG AR method are less than that of P GPBi-CG method.
On the other hand, P GPBi-CG has only one time of successful convergence.

3. For 16 matices except the matrices shown in Table 2, the computation times
of preconditioned P GPBiCG AR method are nearly as same as those of
P GPBi-CG method.

In Fig.4 we demonstrate history of relative residual 2-norm of P GPBiCG AR
and P GPBi-CG methods for (a) saga005 and (b) sme3db matrices. At Fig.4 (a),
although P GPBiCG AR can converge successfully when acceleration coefficient
γ is 1.26, P GPBi-CG cannnot converge at the same acceleration coefficient γ.
Then, we can see both methods can converge when acceleration coefficient γ

is 1.08 in Fig.4 (b). At first, these two methods compete with each other until

Stability of GPBiCG AR Method 117

-8

-6

-4

-2

 0

 2

 0 1000 2000 3000 4000 5000 6000

R
e
l
a
t
i
v
e

R
e
s
i
d
u
a
l

Iterations

saga005(acceleration coefficient=1.26)

P-GPBiCG-AR
P-GPBi-CG

-8

-6

-4

-2

 0

 2

 0 200 400 600 800 1000

R
e
l
a
t
i
v
e

R
e
s
i
d
u
a
l

Iterations

sme3db(acceleration coefficient=1.08)

P-GPBiCG-AR
P-GPBi-CG

(a)matrix: saga005 (b)matrix: sme3db

Fig. 4. History of relative residual 2-norm of P GPBiCG AR (solid line) and P GPBi-
CG (dotted line) methods for two matrices saga005 and sme3db

residual level 10−2. Finally, P GPBiCG AR can converge with less number of
iterations than the other.

Fig.5 illustrates the number of iterations and the relative residuals with the
various acceleration coefficient γ for two matrices (a)sme3db and (b)ex19. In
these figures, the vertical axis on right-hand side means number of iterations
and the vertical axis on left-hand side also means relative residual. The bars
in red represent number of iterations for P GPBiCG AR method. Similarly the
bars in blue represent number of iterations for P GPBi-CG method. The solid
line in red and dotted line in blue are relative residual of P GPBiCG AR and
P GPBi-CG methods, respectively.

In Fig.5(a), both P GPBiCG AR and P GPBi-CG methods can converge well
with a variety of acceleration coefficient γ. Furthermore, P GPBiCG AR method
can converge with less number of iterations than that of P GPBi-CG method.

In Fig.5(b), both P GPBiCG AR and P GPBi-CG methods diverge when ac-
celeration coefficient γ is smaller than 1.12. Although P GPBiCG AR method
cannot converge at acceleration coefficient γ of 1.11, its relative residual reached
closely at 10−7 of the stopping criterion. When acceleration coefficients γ’s be-
come both 1.12 and 1.14, the bars are very high. On the contrary, when accel-
eration coefficient γ becomes greater than 1.14, the bars are very low and flat.
These facts mean that P GPBiCG AR and P GPBi-CG methods converge very
fast and stably. Hence, acceleration coefficient γ’s which become larger than 1.14
are preferable for solving efficiently the matrix ex19.

Fig.6 illustrates the number of iterations and the relative residuals with the
various acceleration coefficient γ for two matrices (a)saga005 and (b)olafu. In
these figures, the vertical axis on right-hand side means number of iterations
and the vertical axis on left-hand side means relative residual. The bars in red
represent number of iterations for P GPBiCG AR method. The bars in blue
represent number of iterations for P GPBi-CG method. The solid line in red
and dotted line in blue are relative residual of P GPBiCG AR and P GPBi-CG
methods, respectively.

118 M. Thuthu and S. Fujino

sme3db

0

200

400

600

800

1000

1200

1400

1600

1

1
.0
2

1
.0
4

1
.0
6

1
.0
8

1
.1

1
.1
2

1
.1
4

1
.1
6

1
.1
8

1
.2

1
.2
2

1
.2
4

1
.2
6

1
.2
8

1
.3

Acceleration coefficient : γ

It
e
r
a
t
io
n
s

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

R
e
la
t
iv
e
_r

GPBiCG_AR(Itr.) GPBiCG(Itr.)

GPBiCG_AR(Relative_r) GPBiCG(Relative_r)

(a)matrix: sme3db
ex19

0

100

200

300

400

500

600

1

1
.0
2

1
.0
4

1
.0
6

1
.0
8

1
.1

1
.1
2

1
.1
4

1
.1
6

1
.1
8

1
.2

1
.2
2

1
.2
4

1
.2
6

1
.2
8

1
.3

Acceleration coefficient :γ

It
e
r
a
t
io
n
s

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

R
e
la
t
iv
e
_r

GPBiCG_AR(Itr.) GPBiCG(Itr.)

GPBiCG_AR(Relative_r) GPBiCG(Relative_r)

(b)matrix: ex19

Fig. 5. Number of iterations and relative residuals with various acceleration coefficient
γ for two matrices sme3db and ex19

In Fig.6(a), some bars are very high and some bars are low. This means
that the convergences of P GPBiCG AR and P GPBi-CG methods are not
stable. However, the number of bars of P GPBiCG AR method is more than
that of P GPBi-CG method. In addition, P GPBiCG AR method can con-
verge in wide range of acceleration coefficient γ. Hence, we can conclude that
new P GPBiCG AR method has safety convergence compared with P GPBi-CG
method.

We remark Fig.6(b) as follows. In Fig.6(b), the solide line in red which plots
for relative residual of P GPBiCG AR method disappear at acceleration coeffi-
cient γ’s of 1.22 and 1.27. The dotted line in blue which plots for relative residual
of P GPBi-CG method also disappear at acceleration coefficient γ of 1.01. These
cases happen because of the occurence of breakdown. Although the breakdown

Stability of GPBiCG AR Method 119

saga005

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1

1
.0
2

1
.0
4

1
.0
6

1
.0
8

1
.1

1
.1
2

1
.1
4

1
.1
6

1
.1
8

1
.2

1
.2
2

1
.2
4

1
.2
6

1
.2
8

1
.3

Acceleration coefficient : γ

It
e
r
a
t
io
n
s

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

R
e
la
t
iv
e
_r

GPBiCG_AR(Itr.) GPBiCG(Itr.)

GPBiCG_AR(Relative_r) GPBiCG(Relative_r)

(a)matrix: saga005
olafu

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1

1
.0
2

1
.0
4

1
.0
6

1
.0
8

1
.1

1
.1
2

1
.1
4

1
.1
6

1
.1
8

1
.2

1
.2
2

1
.2
4

1
.2
6

1
.2
8

1
.3

Acceleration coefficient : γ

It
e
r
a
t
io
n
s

-8

-7

-6

-5

-4

-3

-2

-1

0

1

R
e
la
t
iv
e
_r

GPBiCG_AR(Itr.) GPBiCG(Itr.)

GPBiCG_AR(Relative_r) GPBiCG(Relative_r)

(b)matrix: olafu

Fig. 6. Number of iterations and relative residuals with various acceleration coefficient
γ for two matrices saga005 and olafu

occurs during iteration process of P GPBiCG AR, this method converges seven
times and P GPBi-CG method converges only one time. On the other hand, the
dotted line in blue which plots for the relative residual of P GPBi-CG method
oscillates between residual level of 10−2 and 10−4 when acceleration coefficient
γ is larger than 1.12. Actually P GPBi-CG fails to converge when the maxi-
mum number of iterations becomes larger. On the other hand, the solid line
which plots for the relative residual of P GPBiCG AR method reaches at rela-
tive level of 10−6 at acceleration coefficient γ of 1.24. Hence, P GPBiCG AR
method can be expected that it may converge if we increase the maximum
number of iterations. From these remarks, Fig.6(b) proves that P GPBiCG AR
method is preferable than P GPBi-CG method from the viewpoint of safety
convergence.

Finally, from Figs. 4-6, we can conclude that P GPBiCG AR method is su-
perior to P GPBi-CG method.

120 M. Thuthu and S. Fujino

4 Conclusions and Future Work

In this paper, GPBiCG AR and P GPBiCG AR are proposed for the purpose of
removal of unstability of GPBi-CG. From numerical experiments, we can con-
clude that GPBiCG AR method works very well compared with the original
GPBi-CG method from the view of stability of convergence and computation
times. P GPBiCG AR method is also superior to P GPBi-CG method. More-
over, experimental evidences indicate that GPBiCG AR and P GPBiCG AR
yield safety convergence.

As you understand well from the above the conclusions, P GPBiCG AR
method can converge in a richness of wide range of acceleration coefficient γ

compared with P GPBi-CG method. Therefore, we should find out to decide
optimum acceleration coefficient γ as future work.

References

[1] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
[2] Tim Davis’ sparse matrix collection of Florida University,

http://www.cise.ufl.edu/research/sparse/matrices/
[3] Fujino, S., Fujiwara, M., Yoshida, M.: BiCGSafe method based on minimization of

associate residual, JSCES 2005 (2005),
http://www.jstage.jst.go.jp/article/jsces/2005/0/20050028 pdf/-char/ja/
(in Japanese)

[4] van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13,
631–644 (1992)

[5] van der Vorst, H.A.: Iterative Krylov preconditionings for large linear systems.
Cambridge University Press, Cambridge (2003)

[6] Zhang, S.-L.: GPBi-CG: Generalized product-type methods based on Bi-CG for
solving nonsymmetric linear systems. SIAM J. Sci. Comput. 18, 537–551 (1997)

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.jstage.jst.go.jp/article/jsces/2005/0/20050028_pdf/-char/ja/

Evaluation of a Java Computer Algebra System

Heinz Kredel

IT-Center, University of Mannheim, 68131 Mannheim, Germany
kredel@rz.uni-mannheim.de

Abstract. This paper evaluates the suitability of Java as an implemen-
tation language for the foundations of a computer algebra library. The
design of basic arithmetic and multivariate polynomial interfaces and
classes have been presented in [1]. The library is type-safe due to its
design with Java’s generic type parameters and thread-safe using Java’s
concurrent programming facilities. We evaluate some key points of our
library and differences to other computer algebra systems.

1 Introduction

We have presented an object oriented design of a Java Computer Algebra System
(called JAS in the following) as type safe and thread safe approach to computer
algebra in [1,2,3]. JAS provides a well designed library for algebraic computations
implemented with the aid of Java’s generic types. The library can be used as
any other Java software package or it can be used interactively or interpreted
through an jython (Java Python) front end. The focus of JAS is at the moment
on commutative and solvable polynomials, Groebner bases and applications. By
the use of Java as implementation language, JAS is 64-bit and multi-core cpu
ready. JAS has been developed since 2000 (see the weblog in [3]).

This work is interesting for computer science and mathematics, since it ex-
plores the Java [4] type system for expressiveness and eventual short comings.
Moreover it employs many Java packages, and stresses their design and perfor-
mance in the context of computer algebra, in competition with systems imple-
mented in other programming languages.

JAS contains interfaces and classes for basic arithmetic of arbitrary precision
integers and rational numbers and multivariate polynomials with such coeffi-
cients. Additional packages in JAS are:

– The package edu.jas.ufd contains classes for unique factorization domains.
Like the interface GreatestCommonDivisor, an abstract class providing com-
monly useful methods and classes with implementations for polynomial re-
mainder sequences and modular algorithms.

– The package edu.jas.ring contains classes for polynomial and solvable
polynomial reduction, Groebner bases and ideal arithmetic as well as thread
parallel and distributed versions of Buchbergers algorithm like Reduction-
Seq, GroebnerBaseParallel and GroebnerBaseDistributed.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 121–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 H. Kredel

– The package edu.jas.module contains classes for module Groebner bases,
syzygies for polynomials and solvable polynomials like ModGroebnerBase or
SolvableSyzygy.

– Finally, the package edu.jas.application contains applications of Groeb-
ner bases, such as ideal intersections and ideal quotients in the classes Ideal
or SolvableIdeal.

The emphasis of this paper is the evaluation of the JAS library design with
respect to the points: interfaces as types, generics and inheritance, dependent
types, method semantics, recursive types, design patterns, code reuse, perfor-
mance, applications, parallelization, libraries, and the Java environment.

1.1 Related Work

In this section we briefly give some pointers to related work, for details see [1,2].
For an overview on other computer algebra systems see [5]. Typed computer
algebra systems with own programming languages are described for example
in [6,7,8]. Computer algebra systems implemented in other programming lan-
guages and libraries are: in C/C++ [9,10,11], in Modula-2 [12], in Oberon [13]
and in FORTRAN [14]. A Python wrapper for computer algebra systems is pre-
sented in [15]. Java computer algebra implementations have been discussed in
[16,17,18,19,20,21]. Newer approaches are discussed in [22,23,24].

The expression of mathematical requirements for generic algorithms in pro-
gramming language constructs have been discussed in [25,26].

More related work, together with an evaluation of the design, is discussed in
section 3. Due to limited space we have not discussed the related mathematical
work on solvable polynomials, Groebner base and greatest common divisor al-
gorithms, see [27,28] for some introduction. This paper contains an expanded,
revised and corrected part of [2] and is a revised version of [29].

T[0] = 1
T[1] = x
T[2] = 2 x^2 - 1
T[3] = 4 x^3 - 3 x
T[4] = 8 x^4 - 8 x^2 + 1
T[5] = 16 x^5 - 20 x^3 + 5 x
T[6] = 32 x^6 - 48 x^4 + 18 x^2 - 1
T[7] = 64 x^7 - 112 x^5 + 56 x^3 - 7 x
T[8] = 128 x^8 - 256 x^6 + 160 x^4 - 32 x^2 + 1
T[9] = 256 x^9 - 576 x^7 + 432 x^5 - 120 x^3 + 9 x

Fig. 1. Chebychev polynomials

Evaluation of a Java Computer Algebra System 123

1.2 Outline

In the next section 2, we give some examples on using the JAS library and give an
overview of the JAS type system for polynomials. Due to limited space we must
assume that you are familiar with the Java programming language [30] and object
oriented programming. Section 3 evaluates the presented design and compares
JAS to other computer algebra systems. In particular it discusses interfaces as
types, generics and inheritance, dependent types, method semantics, recursive
types, design patterns, code reuse, performance, applications, parallelization,
libraries, and the Java development environment. Finally section 4 draws some
conclusions.

2 Introduction to JAS

In this section we show some examples for the usage of the JAS library, and then
discuss the general layout of the polynomial types. Some parts of this section
are similar to the JAS introduction in [3].

2.1 Using the JAS Library

To give a first idea about the usage of the library, we show the computation of
Chebychev polynomials. They are defined by the recursion: T [0] = 1, T [1] = x,

1. int m = 10;
2. BigInteger fac = new BigInteger();
3. String[] var = new String[]{ "x" };
4. GenPolynomialRing<BigInteger> ring
5. = new GenPolynomialRing<BigInteger>(fac,1,var);
6. List<GenPolynomial<BigInteger>> T
7. = new ArrayList<GenPolynomial<BigInteger>>(m);
8. GenPolynomial<BigInteger> t, one, x, x2;
9. one = ring.getONE();
10. x = ring.univariate(0); // polynomial in variable number 0
11. x2 = ring.parse("2 x");
12. T.add(one); // T[0]
13. T.add(x); // T[1]
14. for (int n = 2; n < m; n++) {
15. t = x2.multiply(T.get(n-1)).subtract(T.get(n-2));
16. T.add(t); // T[n]
17. }
18. for (int n = 0; n < m; n++) {
19. System.out.println("T["+n+"] = " + T.get(n));
20. }

Fig. 2. Computing Chebychev polynomials

124 H. Kredel

T [n] = 2x × T [n − 1] − T [n − 2] ∈ ZZ[x]. The first ten Chebychev polynomials
are shown in figure 1.

The polynomials have been computed with the Java program in figure 2. In
lines 4 and 5 we construct a polynomial factory ring over the integers, in one
variable "x". This factory object itself needs at least a factory for the creation of
coefficients and the number of variables. Additionally the term order and names
for the variables can be specified. With this information the polynomial ring fac-
tory can be created by new GenPolynomialRing <BigInteger> (fac,1,var),
where fac is the coefficient factory, 1 is the number of variables, and var is
an String array of names. In lines 8 to 11 the polynomials for the recursion
base, one and x are created. Both are generated from the polynomial factory
with method ring.getONE() and ring.univariate(0), respectively. The poly-
nomial 2x is, for example produced by the method ring.parse("2 x"). The
string argument of method parse() can be the TEX-representation of the poly-
nomial, except that no subscripts may appear. Note, x2 could also be created
from the coefficient factory by using x.multiply(fac.fromInteger(2)) or,
directly by x.multiply(new BigInteger(2)).

In lines 6 and 7 a list T is defined and created to store the computed polyno-
mials. Then, in the for-loop, the polynomials T [n] are computed using the defini-
tion, and stored in the list T for further use. In the last for-loop, the polynomials
are printed, producing the output shown in figure 1. The string representation
of the polynomial object can be created, as expected, by toString().

To use other coefficient rings, one simply changes the generic type parameter,
say, from BigInteger to BigComplex and adjusts the coefficient factory. The
factory would then be created as c = new BigComplex(), followed by new Gen-
PolynomialRing<BigComplex>(c,1,var). This small example shows that this
library can easily be used, just as any other Java package or library.

2.2 JAS Class Overview

The central interface is RingElem (see figure 3, left part) which extends Abelian-
GroupElem with the additive methods and MonoidElem with the multiplicative
methods. Both extend Element with methods needed by all types. RingElem is
itself extended by GcdRingElem, which includes greatest common divisor meth-
ods and StarRingElem, containing methods related to (complex) conjugation.

The interface RingElem defines a recursive type which specifies the function-
ality of the polynomial coefficients and is also implemented by the polynomials.
So polynomials can be taken as coefficients for other polynomials, thus defin-
ing a recursive polynomial ring structure. We separate the creational aspects of
ring elements into ring factories with sufficient context information. The mini-
mal factory functionality is defined by the interface RingFactory (see figure 3,
right part). Constructors for polynomial rings will then require factories for the
coefficients so that the construction of polynomials poses no problem.

The RingElem interface (with type parameter C), defines the commonly used
methods required for ring arithmetic, such as C sum(C S), C subtract(C S),
C abs(), C negate(), C multiply(C s), C divide(C s), C remainder(C s),

Evaluation of a Java Computer Algebra System 125

Fig. 3. Overview of some algebraic types and of generic polynomials

and C inverse(). In addition to the arithmetic methods there are testing meth-
ods such as boolean isZERO(), isONE(), isUnit() and int signum(). The
first three test if the element is 0, 1 or a unit in the respective ring. The
signum() method computes the sign of the element (in case of an ordered ring).
The methods equals(Object b), int hashCode() and int compareTo(C b)
are required by Java’s object machinery. The last method C clone() can be
used to obtain a copy of the actual element.

The RingFactory interface defines the methods C getZERO(), C getONE(),
which create 0 and 1 of the ring, respectively. The creation of the 1 is most dif-
ficult, since for a polynomial it implies the creation of the 1 from the coefficient
ring, i.e. we need a factory for coefficients at this point. Further there are meth-
ods to embed a natural number into the ring and create the corresponding ring
element, for example C fromInteger(long a). Other important methods are C
random (int n), C copy(C c), C parse (String s), and C parse (Reader
r). The random(int n) method creates a random element of the respective
ring. The two methods parse(String s) and parse(Reader r) create ring el-
ements from some external representations. The methods boolean isField(),
isCommutative() or isAssociative() query specific properties of the ring.

Generic polynomials are implemented in class GenPolynomial, which has a
type parameter C that extends RingElem<C> for the coefficient type (see fig-
ure 3, right part). All operations on coefficients, that are required in poly-
nomial arithmetic and manipulation are guaranteed to exist by the RingElem
interface. The constructors of the polynomials always require a matching poly-
nomial factory. The generic polynomial factory is implemented in the class
GenPolynomialRing, again with type parameter C extends RingElem<C> (not

126 H. Kredel

RingFactory). The polynomial factory implements the interface RingFactory<C
extends RingElem<C>> so that it can also be used as coefficient factory. The
constructors for GenPolynomialRing require at least the parameters for a coef-
ficient factory and the number of variables of the polynomial ring.

The design of the other types and classes together with aspects of implemen-
tation are discussed in detail in [1].

3 Evaluation

In this section we discuss, without striving for completeness, some key points
of our library and differences to other systems. Due to space restrictions, we
assume some knowledge of [1] in the following, see also [3] and the related work
in the introduction.

3.1 Interfaces as Types

In [31,32] the authors argue, and give counter examples, that a type system
based only on (multiple) inheritance, is not sufficient to implement mathemat-
ical libraries, in particular, it is not sufficient to implement computer algebra
libraries. As a solution they advocate interfaces, called signatures in their pa-
per, as we find them now in Java. With the aid of interfaces it is possible to
define a abstract type system separate of any implementation types defined by
class hierarchies, as was already pointed out by [33]. This approach was partly
anticipated in the Axiom system [6] with categories and domains. A category in
Axiom is a kind of interface, but with the possibility to give implementations for
certain methods, like an Java abstract class. A domain is similar to a Java class.
In [34] the necessary flexibility for the type system was achieved by a decoupling
of classes from views (interfaces in Java). In defining views, one could however,
give arbitrary mappings for the view method names to the implementing class
method names. Java allows only exact matching names, or one has to resort to
some facade or adaptor pattern [35] to map names during runtime. The definition
of the type hierarchy from Element to RingElem is perfectly suited to abstract
from the common characteristics of coefficients and polynomials to make them
exchangeable and inter-operable.

In section 2.4 (solvable polynomials) in [1] a problem appeared with the type
erasure the compiler does for generic types to generate the raw implementation
classes. Further investigation revealed, that this is not a problem of type erasure,
but a feature of any generic object oriented programming language. A sub-class
can not be allowed to implement a generic interface with a type parameter of
the sub-class. Since this would require the compiler to check that no method
of the super class, which is not overwritten in the sub-class, uses a super class
constructor. This is not feasible to check for the compiler and impossible for sep-
arately compiled class libraries. This implies that our proposal to solve the type
erasure problem, in [2], is wrong. In our case of the GenPolynomial super class
we assured by using factory methods of the sub-class GenSolvablePolynomial

Evaluation of a Java Computer Algebra System 127

that any super class method returns objects of the sub-class. I.e. we changed the
semantics of the super class methods to return sub-class objects but a compiler
can not suss this.

3.2 Generics and Inheritance

The first version of the JAS library was implemented without generic types [36].
One obvious reason was, that generics were only introduced to the Java lan-
guage in JDK 1.5. But it was well known from papers, such as [37], that generics
are not necessarily required, when the programming language has, or allows the
construction of a well-designed type hierarchy. In our previous implementation
(up to 2005) we employed an interface Coefficient, which was implemented
by coefficient classes and used in the Polynomial interface. Polynomial also
extends Coefficient and so, polynomials could be used as coefficients of other
polynomials. The Coefficient interface has now become the RingElem inter-
face. However, with the old non-generic approach one looses some type safety,
i.e. one could inadvertently multiply a polynomial with BigInteger coefficients
by a polynomial with, say BigRational coefficients, and the compiler could not
determine a problem. To prevent this, we had incorporated the name of the co-
efficient type in the name of the polynomial type, for example RatPolynomial
or IntPolynomial in that release. A second reason for this first design was non
existent coefficient factories, which could construct coefficients, say for the con-
stant polynomial 1. Although the coefficient specific polynomials, for example
RatPolynomial, have been extended from an abstract polynomial base class, for
example MapPolynomial, it lead to much duplication of code. With the current
generic type parameter approach we have removed all duplicate code for poly-
nomial implementations. Moreover the type of the polynomial is clearly visible
from the denotation, for example GenPolynomial<BigInteger>, of polynomial
variables.

3.3 Dependent Types

The problem of dependent types is that we cannot distinguish polynomials in, say
3 variables from polynomials in, say 5 variables from their type. This carves a hole
in the type safety of our library. I.e. the polynomial factories GenPolynomialRing
<BigInteger> (c, 3) and GenPolynomialRing <BigInteger> (c, 5) create
polynomials with the same type GenPolynomial <BigInteger>, but will most
likely produce a run-time error, when, say, they are added together. Of course,
the method equals() of the factory will correctly determine, that the rings are
not equal, but the compiler is not able to infer this information and we are not
able to denote hints.

This problem also occurs in the class ModInteger and ModIntegerRing. The
type depends on the value of the modulus chosen. I.e. ModIntegerRing(5) and
ModIntegerRing(7) are incompatible, but are denoted by the same type. Al-
though the implementation of arithmetic methods of ModInteger will always
choose the modulus of the first operand and therefore there will not be a run-
time error, but this could lead to wrong results in applications.

128 H. Kredel

The SmallTalk system [34] could use a elegant solution for this problem. Since
types are first class objects, they can be manipulated as any other object in the
language. For example one could define the following (in Java like syntax)

class Mod7 = ModIntegerRing(7);
Mod7 x = new Mod7(1);

Now Mod7 is a type, which can be used to define and create new objects.
A minor problem of the same kind occurs with the term order defined in

the polynomial factory, see [1]. It too, could be incompatible at run-time and
this fact it is not expressed in the type. The actual implementation ignores this
problem and arithmetic methods will produce a correct result polynomial, with a
term order chosen from one of its input polynomials. However applications could
eventually be confused by this behavior, for example Groebner base calculations.

Other computer algebra systems, for example [6], treat the polynomial de-
pendent type case with some coercion facility. I.e. in most cases it is clear how
to coerce a polynomial in 3 variables to a polynomial in 5 variables by adding
variables with exponent zero or to coerce both to polynomials in 8 variables if
variable names are disjoint.

A type correct solution to the dependent type problem in Java would be, to
introduce an new type for every expected variable number, for example Var1,
Var2, Var3, and to use this as additional type parameter for polynomials

GenPolynomialRing<BigRational,Var5>.

The types Var* could be implemented by interfaces or more suitably by exten-
sion of an abstract base class defining an abstract method numberOfVariables
which could be used to query the number of variables at runtime. However,
such a solution is impractical, since the number of variables of polynomials in
applications is often determined at run-time and not during compile time.

How dependent types can correctly be handled in a programming language
by the compiler, is discussed in [38].

3.4 Method Semantics

The interface RingElem defines several methods which cannot be implemented
semantically correct in all classes. For example

– the method signum() makes no sense in unordered rings,
– the methods divide() and remainder() are not defined, if the divisor is

zero or only of limited value for multivariate polynomials,
– the method inverse() may fail, if the element is not invertible, e.g. for r =

new ModIntegerRing(6), a = new ModInteger(r,3), a.inverse() fails,
since 3 is not invertible in ZZ6.

More examples for other systems can be found in [39]. We have adopted the
policy to allow any meaningful reaction in these cases. For example the method
signum() in BigComplex returns 0 if the number is equal to 0 and a non zero

Evaluation of a Java Computer Algebra System 129

value otherwise. The case of division by zero is in Java usually handled by
throwing a run-time exception, and so do we. This is meaningful, since such a
case is mostly an input error, which should have been handled by the calling
programs.

For inverse(), the situation is slightly different. If the element is zero it is an
error and a run-time exception can be thrown. But in the context of dependent
types there are elements, which are not zero, but can nevertheless not be inverted.
As in the above example 3 is not zero, but is not invertible in ZZ6. Also matrices
can be non-zero but are eventually not invertible. In Axiom [6] such cases are
handled by returning a special constant "failed", with obvious problems arising
for the type system. In Java we have the mechanism of checked exceptions. So
for inverse(), it should be considered to add a throws clause in the definition,
to make the user aware of some potential problem. At the moment we throw a
run-time exception, but we will explore this variant in future refactorings.

In JAS there are testing methods to determine such cases. For example
isZERO() or isUnit() to check if an element is invertible. For isUnit() the
computing time can be as high as the computing time for inverse(), which
doubles the computing time at this point and may not always be practical. In the
factories there are methods to check further conditions. For example isField(),
to test if the ring is a field and therefore if all non-zero elements are invertible.

There are proposals in [25,26] to formalize the semantic requirements for
methods and types, so that the compiler can check them during compilation.
Also Axiom [6] has some capabilities to specify and check method constraints.
Some of this functionality can be provided in Java by polymorphic factories, see
section 3.6.

3.5 Recursive Types

We have exercised some care in the definition of our interfaces to assure, that
we can define recursive polynomials. First, the interface RingElem is defined as

RingElem<C extends RingElem<C>>.

So the type parameter C can (and must) itself be a subtype of RingElem. For
polynomials we can define a polynomial with polynomials as coefficients

GenPolynomial< GenPolynomial<BigRational> >

In some applications presented in [1], for example the Groebner base algorithms,
we make no use of this feature. However, there are many algebraic algorithms
which are only meaningful in a recursive setting. For example greatest common
divisors or factorization of multivariate polynomials. Although a study of this
will be covered by a future publication, one observation is, that our type sys-
tem will unfortunately lead to code duplication. The code for baseGcd() and
recursiveGcd() is practically the same, but the methods have different param-
eter types. Further, by the type erasure for generic type parameters, they must
also have different names.

130 H. Kredel

We have successfully implemented a greatest common divisor package for
multivariate polynomials, using these recursive type features. There is a clean
interface GreatestCommonDivisorwith only the most useful methods. These are
gcd(), lcm(), squarefreePart(), squarefreeFactors(), content(), primi-
tivePart(), and resultant(). The generic algorithms then work for all imple-
mented (commutative) field coefficients.

The abstract class GreatestCommonDivisorAbstract implements the full set
of methods, specified in the interface. Only two methods must be implemented
for the different gcd algorithms. Details on the problems and solutions of this
package will be covered by a future publication.

3.6 Factory Pattern

The usage of the factory pattern [35] to create objects with complex parametriza-
tion requirements is a standard technique in object oriented programming. Sur-
prisingly, it has already been used in the SmallTalk implementation presented in
[34]. Recently this approach was advocated again in [17,18]. But, otherwise we
see this pattern seldom in computer algebra systems. The mainly used way to
create polynomials or matrices is via constructors or by coercions from general
algebraic expressions [6].

There is a nice application of the factory pattern in the ufd package. The
factory GCDFactory can be used to select one from the many greatest common
divisor implementations. This allows non-experts of computer algebra to choose
the right algorithm for their problem.

GreatestCommonDivisor<BigInteger> engine
= GCDFactory.<BigInteger>getImplementation(fac);

c = engine.gcd(a,b);

The static overloaded methods getImplementation() construct a suitable gcd
implementation for the given type. The selection of the getImplementation()
method takes place at compile time. I.e. depending on the desired actual type,
different methods are selected. The coefficient factory parameter fac is used
at run-time to check for example if the coefficients are from a field, to further
optimize the selection. For the special cases of BigInteger and ModInteger
coefficients, the modular algorithms can be employed.

This factory approach contrasts the approach taken in [25,26] to provide pro-
gramming language constructs to specify the requirements for the selection of
appropriate algorithm implementations. We can define requirements in Java
with interface names and specifications together with the extends clause in
the generic type parameter definition.

3.7 Code Reuse

With the help of generic programming we could drastically reduce the code of
the earlier MAS [12] (and of the SAC-2 [14]) libraries. MAS has three major
polynomial implementations, called distributive and recursive representation,

Evaluation of a Java Computer Algebra System 131

and univariate dense representation. For each representation there are three
or more implementations. One ‘class’ for integer coefficients, one for rational
number coefficients and one for modular integer coefficients. In JAS there is
only one polynomial class, which works for all implemented coefficients.

In MAS, a arbitrary domain polynomial implementation exists. Here, the co-
efficients consist of a domain descriptor and a domain value. With the domain
descriptor it was possible to select at run-time the corresponding implemen-
tation for the domain values and provide further context information for the
called ‘methods’. 13 coefficient domains have been implemented. Besides the
lack of type safety, the introduction of a new coefficient implementation re-
quired the update of dispatching tables for all methods. The run-time selection
of the implementation added a performance penalty (of about 20%), see [12]
and the references there. With Java we have no performance loss for the generic
coefficients and no need for recoding if new coefficients are introduced in the
future.

A particular nice example for code reuse is the computation of e-Groebner
bases, see for example [27]. They are d-Groebner bases but with e-reduction
instead of d-reduction. This can be expressed by sub-classing with a different
constructor.

public class EGroebnerBaseSeq<C extends RingElem<C>>
extends DGroebnerBaseSeq<C> {

public EGroebnerBaseSeq(EReductionSeq<C> red) {...} /*empty*/ }

3.8 Performance

The performance of Java is discussed in section 3.12. For our polynomial imple-
mentation (see [1]), performance is mainly determined by

1. the performance of coefficient arithmetic,
2. the sorted map implementation and
3. the exponent vector arithmetic.

Coefficient arithmetic of polynomials is based on the Java BigInteger class.
BigInteger was initially implemented by a native C library, but since JDK
1.3 it is implemented in pure Java [40]. The new implementation has better
performance than the C library. The sorted map implementation is from the
Java collections package, which uses known efficient algorithms for this purpose,
and it is comparable to other libraries, such as the C++ STL. However, we are
not aware of general performance comparisons of the collection frameworks.

The exponent vector implementation is based on Java arrays of longs. It
could be faster by using arrays of ints or shorts as most computations seldom
require polynomials of degrees larger than 216. This would reduce the memory
footprint of a polynomial and so improve cache performance. If Java would
allow elementary types as type parameters, it would be possible to make the
ExpVector class generic, for example ExpVector<long> or ExpVector<int>.

132 H. Kredel

Table 1. JAS polynomial multiplication benchmark

Computing times in seconds on AMD 1.6 GHz CPU.
Options are: coefficient type, term order: G = graded, L = lexicographic, big c =

using the big coefficients, big e = using the big exponents, s = server JVM.
options, system JDK 1.5 JDK 1.6

BigInteger, G 16.2 13.5

BigInteger, L 12.9 10.8

BigRational, L, s 9.9 9.0

BigInteger, L, s 9.2 8.4
BigInteger, L, big e, s 9.2 8.4
BigInteger, L, big c 66.0 59.8

BigInteger, L, big c, s 45.0 45.8

However, using objects like Long or Integer as exponents, would imply auto-
boxing and introduce too much performance penalties. To make the library useful
for a wide range of applications we decided to stay with the implementation using
longs.

There is a simple benchmark for comparing the multiplication of sparse poly-
nomials in [41]. It times the computation of the product of two polynomials
q = p × (p + 1), with integer coefficients, where p = (1 + x + y + z)20, with
bigger coefficients p = (10000000001(1+ x + y + z))20, or with bigger exponents
p = (1 + x2147483647 + y2147483647 + z2147483647)20. The results for JAS are shown
in table 1 and for other systems in table 2. The timings are partly from [2] and
show that JAS is more than 3 times faster than the old MAS system but also 3.5
times slower than the Singular system. However Singular is not able to compute
the example with bigger exponents. For this example JAS is 45% faster than
Maple, and 65% faster than Mathematica. This shows that JAS (and the Java
VM) matches the performance of general purpose systems. For further details
see the discussion in [2].

3.9 Applications

As an application of the generic polynomials we have implemented some more
advanced algorithms, such as polynomial reduction or Buchbergers algorithm to
compute Groebner bases. The algorithms are also implemented for polynomial
rings over principal ideal domains and Euclidean domains and for solvable poly-
nomial rings (with left and two-sided variants) and modules over these rings. The
performance of these implementations will be covered in a future publication.

3.10 Parallelization

JAS has been implemented with the goal of being thread safe from the beginning.
This is mainly achieved by implementing all algebraic elements by immutable
objects. This avoids any synchronization constructs for the methods at the cost
of some more object creations. We have, however, not studied the impact of this
on the performance.

Evaluation of a Java Computer Algebra System 133

Table 2. Polynomial multiplication, other systems

Computing times in seconds on AMD 1.6 GHz CPU and Intel 2.7 GHz CPU.
Options are: coefficient type is rational number for MAS, integer for Singular and

JAS, and it is unknown for Maple an Mathematica, big c = using the big coefficients,
big e = using the big exponents, term order G = graded, L = lexicographic.

options, system time @2.7GHz

MAS 1.00a, L, GC = 3.9 33.2
Singular 2-0-6, G 2.5

Singular, L 2.2
Singular, G, big c 12.95

Singular, L, big exp out of memory

Maple 9.5 15.2 9.1

Maple 9.5, big e 19.8 11.8

Maple 9.5, big c 64.0 38.0

Mathematica 5.2 22.8 13.6

Mathematica 5.2, big e 30.9 18.4

Mathematica 5.2, big c 30.6 18.2

JAS, s 8.4 5.0

JAS, big e, s 8.6 5.1

JAS, big c, s 47.8 28.5

In the beginning, we had developed some utility classes for easier paralleliza-
tion of the algorithms. In the mean time some classes are no more required,
since equivalent substitutions exist in java.util.concurrent since JDK 1.5.
We have replaced some of them in the latest refactorings of the library.

In the ufd package there is a nice parallel proxy class, which provides effec-
tive employment of the fastest algorithms at run-time. In the time of multi-core
CPU computers, we compute the gcd with two (or more) different implemen-
tations in parallel. Then we return the result from the fastest algorithm, and
cancel the other still running one. The gcd proxy can be generated from GCD-
Factory.<C>getProxy(). For example in a Groebner base computation with
rational function coefficients, requiring many gcd computations, the fastest was
3610 times the sub-resultant algorithm and 2189 times a modular algorithm.

3.11 Libraries

The advantage of (scientific) libraries is apparent. Javas [4] success is greatly
influenced by the availability of its comprehensive libraries of well tested and
efficient algorithms. Also languages like Perl or PHP profit greatly from their
comprehensive sets of available libraries. JAS is an attempt to provide a library
for polynomial arithmetic and applications. There are other activities in this
direction, however they are not all open source projects using the GPL license.

The goal of the jscl-meditor [22] project “is to provide a java symbolic com-
puting library and a mathematical editor acting as a front-end to the former.”
jscl has a similar mathematical scope as JAS and we are looking for possibili-
ties to cooperate in future work. The project JScience [24] aims to provide “the

134 H. Kredel

most comprehensive Java library for the scientific community.” The library has a
broader perspective than JAS, in that it wants to support not only mathematics,
but also physics, sociology, biology, astronomy, economics and others. There is
the Orbital library [23], which provides algorithms from (mathematical) logic,
polynomial arithmetic with Groebner bases and optimizations with genetic (sic)
algorithms. The Apache software foundation distributes a numerical mathemat-
ical library as part of the org.apache.commons package [42]. It is a “library
of lightweight, self-contained mathematics and statistics components addressing
the most common problems not available in the Java programming language”.

3.12 Java Environment

In [36] we have advocated the usage of standard libraries in favor of special imple-
mentations. In earlier computer algebra systems the creators had to implement
many standard data structures by themselves. But now, we have the situation,
that many of these data structures are available in form of well designed and
tuned libraries, like the Java collection framework or the standard template li-
brary (STL) from C++. With this approach one can save effort to implement
well known data structures again and again. Moreover, one profits from any im-
provements in the used libraries and improvements of the Java virtual machine
(JVM). This has been exemplified by the performance improvements between
JDK 1.5 and JDK 1.6 in section 3.8, table 1. Since Java is 64-bit ready we have
been able to run Groebner base computations in 50 GB main memory.

In the discussion following my talk at ASCM2007 the performance of Java was
a point of great controversy along the “Java is slow” myth. We admit that the
first Java versions have been slow (compare [19]), but now we see evidence, that
this is no more the case. Since the introduction of the just-in-time compilation
(JIT) to the Java virtual machine the Java byte-code is compiled into native
machine code on the fly [4]. So there is no principle difference in execution speed
compared to C or C++. Already in 2001 (with JDK 1.3) the authors of [43]
conclude “On Intel Pentium hardware, especially with Linux, the performance
gap is small enough to be of little or no concern to programmers.” Newer bench-
marks (up to JDK 1.4) showing Java to be faster than C/C++ are discussed in
[44,45,46]. The performance of generic programming implementations in C++,
Java and C# compared to special hand-coded programs is discussed in [47].
There is a natural “abstraction penalty” in execution speed for all high-level
languages, but on the other hand we see many software engineering benefits for
more abstraction. As a starting point for further information also on performance
issues see Google’s directory [48].

4 Conclusions

JAS provides a consistent object oriented design and implementation of a li-
brary for algebraic computations in Java. For the first time we have produced a
type safe library using generic type parameters in a contemporary programming

Evaluation of a Java Computer Algebra System 135

language. With Javas interfaces we are able to implement all algebraic types re-
quired for a computer algebra system. The generic programming of Java allows
a type safe implementation of polynomial classes. It also helped to drastically
reduce code size and facilitates code reuse. Type safety in JAS is only limited
by the dependent type problem, which cannot be avoided in popular contempo-
rary programming languages. With checked and unchecked exceptions we can
model all necessary algebraic semantics of methods. The recursive RingElem and
polynomial design allows the implementation of all important multivariate poly-
nomial greatest common divisor algorithms. The usage of design patterns, for
example the factory pattern for object creation, allows a clean concept for ob-
ject oriented algebraic programming. Although object orientation looks strange
to mathematicians, it is state of the art in modern programming languages. The
performance of the library is comparable to general purpose computer algebra
systems, but can not match the performance of special hand tuned systems.
We have demonstrated that a large portion of algebraic algorithms can be im-
plemented in a convenient Java library, for example non-commutative solvable
polynomials or greatest common divisors. The parallel and distributed imple-
mentations of Groebner base algorithms draw heavily on the Java packages for
concurrent programming and inter-networking. For the main working structures
we built on the Java packages for multi-precision integers and the collection
framework. The steady improvements of Java and its package implementations,
leverage the performance and capabilities of JAS. A problem with Java’s type
erasure was identified as a general feature of generic object oriented program-
ming languages and is not specific to Java.

In the future we will implement more of ‘multiplicative ideal theory’, i.e.
multivariate polynomial factorization.

Acknowledgments

I thank Thomas Becker for discussions on the implementation of a polynomial
template library and Raphael Jolly for the discussions on the generic type sys-
tem suitable for a computer algebra system. With Samuel Kredel I had many
discussions on the C++ type system and implementation choices for algebraic
algorithms in C++. Thanks also to Markus Aleksy and Hans-Guenther Kruse for
encouraging and supporting this work. Finally I thank the anonymous referees
for suggestions to improve the paper.

References

1. Kredel, H.: On the Design of a Java Computer Algebra System. In: Proc. PPPJ
2006, University of Mannheim, pp. 143–152 (2006)

2. Kredel, H.: On a Java Computer Algebra System, its performance and applications.
In: PPPJ 2006, Science of Computer Programming. Elsevier, Amsterdam (in print,
2008) (special issue)

3. Kredel, H.: The Java algebra system. Technical report (since 2000),
http://krum.rz.uni-mannheim.de/jas/

http://krum.rz.uni-mannheim.de/jas/

136 H. Kredel

4. Sun Microsystems, Inc.: The Java development kit. Technical report (accessed
2007) May (1994-2007), http://java.sun.com/

5. Grabmaier, J., Kaltofen, E., Weispfenning, V. (eds.): Computer Algebra Handbook.
Springer, Heidelberg (2003)

6. Jenks, R., Sutor, R. (eds.): axiom The Scientific Computation System. Springer,
Heidelberg (1992)

7. Bronstein, M.: Sigmait - a strongly-typed embeddable computer algebra library.
In: Proc. DISCO 1996, University of Karlsruhe, pp. 22–33 (1996)

8. Watt, S.: In: Aldor. in Computer Algebra Handbook, pp. 265–270. Springer, Hei-
delberg (2003)

9. Greuel, G.M., Pfister, G., Schönemann, H.: Singular - A Computer Algebra Sys-
tem for Polynomial Computations. In: Computer Algebra Handbook, pp. 445–450.
Springer, Heidelberg (2003)

10. Buchmann, J., Pfahler, T.: LiDIA. In: Computer Algebra Handbook, pp. 403–408.
Springer, Heidelberg (2003)

11. Noro, M., Takeshima, T.: Risa/Asir–a computer algebra system. In: Proc. ISSAC
1992, pp. 387–396. ACM Press, New York (1992)

12. Kredel, H., Pesch, M.: MAS: The Modula-2 Algebra System. In: Computer Algebra
Handbook, pp. 421–428. Springer, Heidelberg (2003)

13. Gruntz, D., Weck, W.: A Generic Computer Algebra Library in Oberon.
Manuscript available via Citeseer (1994)

14. Collins, G.E., Loos, R.G.: ALDES and SAC-2. ACM SIGSAM Bull. 12(2), 19
(1982)

15. Stein, W.: SAGE Mathematics Software (Version 2.7). The SAGE Group (2007)
(accessed 2007, November), http://www.sagemath.org

16. Whelan, C., Duffy, A., Burnett, A., Dowling, T.: A Java API for polynomial arith-
metic. In: Proc. PPPJ 2003, pp. 139–144. Computer Science Press, New York
(2003)

17. Niculescu, V.: A design proposal for an object oriented algebraic library. Technical
report, Studia Universitatis Babes-Bolyai (2003)

18. Niculescu, V.: OOLACA: an object oriented library for abstract and computational
algebra. In: OOPSLA Companion, pp. 160–161. ACM, New York (2004)

19. Bernardin, L., Char, B., Kaltofen, E.: Symbolic computation in Java: an appraise-
ment. In: Dooley, S. (ed.) Proc. ISSAC 1999, pp. 237–244. ACM Press, New York
(1999)

20. Conrad, M.: The Java class package com.perisic.ring. Technical report (accessed
2006) (September 2002-2004), http://ring.perisic.com/

21. Becker, M.Y.: Symbolic Integration in Java. PhD thesis, Trinity College, University
of Cambridge (2001)

22. Jolly, R.: jscl-meditor - java symbolic computing library and mathematical editor.
Technical report (accessed 2007, September) (since 2003),
http://jscl-meditor.sourceforge.net/

23. Platzer, A.: The Orbital library. Technical report, University of Karlsruhe(2005),
http://www.functologic.com/

24. Dautelle, J.M.: JScience: Java tools and libraries for the advancement of science.
Technical report (accessed 2007, May 2005-2007), http://www.jscience.org/

25. Musser, D., Schupp, S., Loos, R.: Requirement oriented programming - concepts,
implications and algorithms. In: Jazayeri, M., Musser, D.R., Loos, R.G.K. (eds.)
Dagstuhl Seminar 1998. LNCS, vol. 1766, pp. 12–24. Springer, Heidelberg (2000)

http://java.sun.com/
http://www.sagemath.org
http://ring.perisic.com/
http://jscl-meditor.sourceforge.net/
http://www.functologic.com/
http://www.jscience.org/

Evaluation of a Java Computer Algebra System 137

26. Schupp, S., Loos, R.: SuchThat - generic programming works. In: Jazayeri, M.,
Musser, D.R., Loos, R.G.K. (eds.) Dagstuhl Seminar 1998. LNCS, vol. 1766, pp.
133–145. Springer, Heidelberg (2000)

27. Becker, T., Weispfenning, V.: Gröbner Bases - A Computational Approach to Com-
mutative Algebra. Graduate Texts in Mathematics. Springer, Heidelberg (1993)

28. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra.
Kluwer, Dordrecht (1993)

29. Kredel, H.: Evaluation of a Java Computer Algebra System. In: Proceedings ASCM
2007, National University of Singapore (2007)

30. Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language, 4th edn.
Addison-Wesley, Reading (2005)

31. Stansifer, R., Baumgartner, G.: A Proposal to Study Type Systems for Computer
Algebra. Technical Report 90-07, Johannes Kepler University, Linz, Austria (1990)

32. Baumgartner, G., Russo, V.F.: Signatures: A language extension for improving
type abstraction and subtype polymorphism in C++. Software - Practice and Ex-
perience 25(8), 863–889 (1995)

33. Liskov, B.: Data abstraction and hierarchy. In: OOPSLA 1987: Addendum to the
proceedings on Object-oriented programming systems, languages and applications
(Addendum), pp. 17–34. ACM, New York (1987)

34. Abdali, S.K., Cherry, G.W., Soiffer, N.: An object-oriented approach to algebra
system design. In: Char, B.W. (ed.) Proc. SYMSAC 1986, pp. 24–30. ACM Press,
New York (1986)

35. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Weseley
(1995)

36. Kredel, H.: A systems perspective on A3L. In: Proc. A3L: Algorithmic Algebra
and Logic 2005, University of Passau, pp. 141–146 (April 2005)

37. Meyer, B.: Genericity versus inheritance. In: OOPSLA, pp. 391–405 (1986)
38. Poll, E., Thomson, S.: The type system of Aldor. Technical report, Computing

Science Institute Nijmegen (1999)
39. Fateman, R.J.: Advances and trends in the design and construction of algebraic

manipulation systems. In: Proc. ISSAC 1990, pp. 60–67. ACM Press, New York
(1990)

40. Sun Microsystems, Inc.: Improvements to program execution speed (accessed 2007,
May 10 2004),
http://java.sun.com/j2se/1.5.0/docs/guide/performance/speed.html

41. Fateman, R.J.: Draft: Comparing the speed of programs for sparse polynomial
multiplication (accessed 2007, May 5 2002),
http://www.cs.berkeley.edu/∼fateman/papers/fastmult.pdf

42. Apache Software Foundation: Commons-Math: The Jakarta mathematics library.
Technical report (accessed 2007, May 18 2003-2007),
http://jakarta.apache.org/commons/

43. Bull, J.M., Smith, L.A., Pottage, L., Freeman, R.: Benchmarking Java against
C and Fortran for scientific applications. In: Proc. Joint ACM Java Grande and
ISCOPE 2001 Conf. ACM Press, New York (2001)

44. Click, C.: Performance myths revisited. In: JavaOne (2005) (accessed January
2008),
http://gceclub.sun.com.cn/java one online/2005/TS-3268/ts-3268.pdf

45. Lewis, J., Neumann, U.: Performance of Java versus C++. Technical report
(accessed 2008) (January 2004),
http://www.idiom.com/∼zilla/Computer/javaCbenchmark.html

http://java.sun.com/j2se/1.5.0/docs/guide/performance/speed.html
http://www.cs.berkeley.edu/~fateman/papers/fastmult.pdf
http://jakarta.apache.org/commons/
http://gceclub.sun.com.cn/java_one_online/2005/TS-3268/ts-3268.pdf
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html

138 H. Kredel

46. Lea, K.: The Java is faster than C++. Technical report (accessed 2008) (January
2005), http://www.kano.net/javabench/

47. Dragan, L., Watt, S.: Performance Analysis of Generics in Scientific Computing.
In: Proceedings of Seventh International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pp. 90–100. IEEE Computer Society, Los
Alamitos (2005)

48. GoogleDirectoryContributors: Computers - programming - languages - comparison
and review. Technical report (accessed 2008) (January 2008),
http://directory.google.com/Top/Computers/Programming/
Languages/Comparison and Review/

http://www.kano.net/javabench/
http://directory.google.com/Top/Computers/Programming/
Languages/Comparison_and_Review/

A New Property of Hamming Graphs and Mesh

of d-ary Trees

Alain Bretto1, Cerasela Jaulin1, Luc Gillibert1, and Bernard Laget2

1 Université de Caen, GREYC CNRS UMR-6072,Campus II, Bd Marechal Juin BP
5186, 14032 Caen cedex, France

alain.bretto@info.unicaen.fr, cerasela.jaulin@info.unicaen.fr,
luc.gillibert@info.unicaen.fr

2 ENISE: 58, rue Jean Parot - 42023 Saint Etienne Cedex 02, France
laget@enise.fr

Abstract. In this article we characterize two well-known graphs used
in many applications, particularly in network applications: Hamming
graphs and meshes of d-ary trees MT (d, 1). More precisely, we show
that they are so-called G-graphs. G-graphs are a new type of graphs
constructed from a group. They have nice algebraic proprieties and can
be regular or semi-regular.

1 Introduction

Group theory is simultaneously a branch of computational algebra [6,7] and the
study of symmetry. Graph theory [14] is one of the most important parts of
computer science and combinatorics. Many areas of science use graph theory
as a basic concept, for example : spatial geometric constraint solving based on
k-connected graph decomposition [11]. There has been significant interaction
between abstract group theory and the theory of graph automorphisms.[13] For
example it has already been proved that every finite group is isomorphic to the
automorphism group of a finite graph. Another link between groups and graphs is
provided by Cayley Graphs, which have acquired additional applications, notably
in the design of parallel computer architectures [8]. Much work has been done
on these graphs [1]. Cayley graphs have nice properties. Their regularity and
underlying algebraic structure make them good candidates for interconnecting
nodes of a network [9].

Another family of graphs constructed from groups are G-graphs. These graphs,
introduced in [2], [3], [5], have highly-regular properties but they can be regular
or semi-regular. Like Cayley graphs, they can be used in many areas of sci-
ence and have applications in error codes theory [4]. A lot of classical graphs are
G-graphs : bipartite complete graphs, 2n×n 4-grids connected thorus, the cuboc-
tahedral graph, the square, some of the generalized Petersen’s graphs, some of
the grids on a 3D torus, Heawood’s. A very important problem is the gener-
ation of both symmetric and semi-symmetric graph. This problem started in
1934 with Foster Census list. Because the algorithm to construct G-graphs is

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 139–150, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 A. Bretto et al.

simple, it becomes easy to construct new symmetric and semi-symmetric cubic,
quadratic, quantic, .. graphs. Moreover, thanks to G-graphs we improved some
upper bounds in the cage graphs problem.

The purpose of this paper is to show that two well-known infinite families of
graphs, Hamming graphs and meshes of d-ary trees MT (d, 1), are G-graphs.

Hamming graphs have many applications: interconnection networks, SIMD
architecture, and parallel computing, to name a few. The most famous Ham-
ming graphs are the hypercubes. They offer good communication performance
(routing, broadcasting, connectivity)[10]. Hypercubes used in interconnection
networks are often studied, as in the carvingwidth of hypercubes [16].
Meshes of d-ary trees MT (d, 1) are semi-regular graphs. Combining tree-like and
grid-like graphs qualities, they are interesting in architectural networks for par-
allel computing. They are a satisfactory example of the use of G-graphs to char-
acterize graphs families which are not Cayley graphs. Consequently G-graphs
are interesting and can be used also in areas of science where Cayley graphs
occur, and also in other areas.

Our work is structured as follows:

– Section 2 - We give the definitions we need;
– Section 3 - We introduce G-graphs and their most important proprieties ;
– Section 4 - We define Hamming graphs as a generalization of hypercubes and

as a Cayley graph, then we construct an isomorphism between the Hamming
graphs and G-graphs;

– Section 5 - Finally, we construct a group for mesh of d-ary trees MT (d, 1)
and we conclude that these graphs are G-graphs.

2 Preliminaries

2.1 Graph Definitions

We define a graph, Γ = (V ; E; ε) in the following way:

– V (Γ) is the set of vertices.
– E(Γ) is the set of edges.
– ε is a map from E to P2(V) (where P2(V) is the set of subsets of V having

1 or 2 elements).

In this article graphs are finite, (sets V and E have finite cardinality). For con-
venience, if a ∈ E, we denote ε(a) = [x; y] with the meaning that the extrem-
ities x, y of a may be equal (loop) or not. For x, y ∈ V , the set M = {a ∈
E, ε(a) = [x; y]} is called multiedge or p-edge if the cardinality of M is p. If
0 ≤ p ≤ 1 without loop we call the graph simple and we note Γ = (V ; E).
We denote an edge ([x; y]; ai) with ([x; y]; ai) ∈ E. The degree of x ∈ V is
the number of edges incident with x: a loop at x will contribute 2 to the de-
gree of x. We will denote the degree by d(x) = {a ∈ E, x ∈ ε(a)}. Given a
graph Γ = (V ; E; ε), we denote the neighborhood of a vertex x by Γ (x), i.e.

A New Property of Hamming Graphs and Mesh of d-ary Trees 141

The set formed by all the vertices adjacent to x, and W ⊂ V , the induced sub-
graph on W is Γ ′ = (W ; E′; ε′) where E′ = {a ∈ E, ε(a) ⊂ W} and ε′ = ε|E′ ;
if ∀x, y ∈ W {x, y} ∈ E′, Γ ′ is a clique. The line graph of the simple (i.e.
without loops and multiedges) graph Γ = (V ; E; ε) is L(Γ) = (E; A; η) where
A = {α = {a, b}, a, b ∈ E, ε(a) ∩ ε(b)
= φ} and η(α) = {a, b}.

Let Γ1 = (V1; E1; ε1) and Γ2 = (V2; E2; ε2) be two graphs, a morphism from
Γ1 = (V1; E1; ε1) to Γ2 = (V2; E2; ε2) is a couple (f, f#) where f : V1 −→ V2 is a
map and f# : E1 −→ E2 is a map such that: if ε1(a) = [x; y] then ε2(f#(a)) =
[f(x); f(y)]. A morphism (f, f#) is an isomorphism if and only if f is a bijection
and f# is a bijection ; for example (idV , id#

V) ; in particular Aut(Γ) is a group.
A graph Γ = (V ; E; ε) is a k-graph if we have a partition of V in k parts
such that any part does not contain any edge other than loops ; we will write
Γ = (�i∈IVi; E; ε) ; when |I| = k is finite, Γ is k-partite ; when k is minimal such
that Γ is a k-graph. sub-group of AutΓ consisting of automorphisms (f, f#) of
Γ satisfying ∀i ∈ I f(Vi) = Vi. A graph is k-semiregular if inside each partition
of it’s k-representation, all vertices have same degree. We can easily see that a
regular graph is a particular case of a semiregular one.

2.2 Group Definitions

Recall that an action of a group G (with unity element e) on a set X is a
map G × X → X (g, x) �→ g.x satisfying e.x = x and g.(g′.x) = (gg′).x,
for every x ∈ X, g, g′ ∈ G.The action is transitive if ∀x, y ∈ X ∃g ∈ G such
that g.x = y. For x ∈ X the stabilizer of x is StabGx = {g, g.x = x}. We
consider, for any a s ∈ S the (left) action of < s > (subgroup generated by
s) on G ; this gives a partition G = �x∈Ts < s > x , where Ts is a right
transversal of < s >. If o(s) = | < s > | is the order of s, we have the cycles
(s)x = (x, sx, s2x, . . . so(s)−1x) of the permutation gs : x �→ s x (x ∈ Ts).

Semi-direct-product of groups. Let H and Q be groups and let Θ : Q →
Aut(H) be a group homomorphism. The semi-direct product of H and Q by Θ
(notation: H �Θ Q) is defined to be the group with underlying set {(h, q)/h ∈
H, q ∈ Q} and the group operation:

(h, q) · (h′, q′) = (h · Θ(q)h′, q · q′)

Cayley Graphs. Let G be a group and S ⊆ G a set of generators. We associate
a digraph called Cayley graph whose the set of vertices is the set of elements of
G and two vertices x, y are adjacent if and only if there exists s ∈ S such that
y = sx. If S = S−1 the graph is undirected and if we choose for S a multi-set
(repeating some generators) we get a Cayley multi-graph.

3 Introduction to G-Graphs

Let (G, S) be a group with a set of generators S. For any s ∈ S, we consider
the left action of the subgroup H = 〈s〉 on G. Thus, we have a partition G =

142 A. Bretto et al.

⊔
x∈Ts

〈s〉x, where Ts is a right transversal of 〈s〉. The cardinality of 〈s〉 is o(s)
where o(s) is the order of the element s. Let us consider the cycles (s)x =
(x, sx, s2x, . . . , so(s)−1x) of the permutation gs: x �−→ sx. Notice that 〈s〉x is the
support of the cycle (s)x. We now define a new graph denoted by Φ(G; S) =
(V ; E; ε) as follows:

– The vertices of Φ(G; S) are the cycles of gs, s ∈ S, i.e., V = �s∈SVs with
Vs = {(s)x, x ∈ Ts}.

– For all (s)x, (t)y ∈ V , {(s)x, (t)y} is a p-edge if card(〈s〉x ∩〈t〉y) = p, p ≥ 1.

Thus, Φ(G; S) is a k-partite graph and any vertex has a o(s)-loop. We denote
Φ̃(G; S) the graph Φ(G; S) without loops. By construction, one edge stands for
one element of G. We can remark that one element of G labels several edges.
Both graphs Φ(G; S) and Φ̃(G; S) are called graph from a group or G-graphs [5]
and we say that the graph is generated by the group (G; S).

3.1 Algorithmic Procedure

The following procedure constructs a graph from a group G and a subset S of
G. A list of vertices and a list of edges represent the graph:

Procedure Group To Graph(G, S)
Data:

G a group
S = {s1, s2, s3, . . . , sk}, a subset of G

Cycles computing
L = ∅
for all a in S

l2 = ∅
gs = ∅
for all x in G

if x not in l2 then
l1 = ∅
for k = 0 to k = Order(a) − 1

Add (ak) × x to l1
Add (ak) × x to l2

end for
Add l1 to gs

end if
end for
Add gs to L

end for
Graph computing

for all s in L
Add s to V
for all s′ in L

for all x in s

A New Property of Hamming Graphs and Mesh of d-ary Trees 143

for all y in s’
if x = y then

Add (s, s′) to E
end if

end for
end for

end for
end for
Return (V, E)

3.2 Complexity and Example

It is easy to see that the complexity of our implementation is O(n2 × k2) where
n is the order of the group G and k is the cardinal of the family S.

Let Z/2Z × Z/2Z × Z/2Z be a a group generated by S = {(1, 0, 0); (0, 1, 0);
(0, 0, 1)}.

Let us compute the graph Φ̃(G; S).
The cycles of the permutation g(1,0,0) are:

((1, 0, 0))(0, 0, 0) = ((0, 0, 0), (1, 0, 0)+(0, 0, 0)) = ((0, 0, 0), (1+0, 0+0, 0+0)) = ((0, 0, 0), (1, 0, 0))

((1, 0, 0))(0, 1, 0) = ((0, 1, 0), (1, 0, 0)+(0, 1, 0)) = ((0, 1, 0), (1+0, 0+1, 0+0)) = ((0, 1, 0), (1, 1, 0))

((1, 0, 0))(0, 0, 1) = ((0, 0, 1), (1, 0, 0)+(0, 0, 1)) = ((0, 0, 1), (1+0, 0+0, 0+1)) = ((0, 0, 1), (1, 0, 1))

((1, 0, 0))(0, 1, 1) = ((0, 1, 1), (1, 0, 0)+(0, 1, 1)) = ((0, 1, 1), (1+0, 0+1, 0+1)) = ((0, 1, 1), (1, 1, 1))

The cycles of the permutation g(0,1,0) are:

((0, 1, 0))(0, 0, 0) = ((0, 0, 0), (0, 1, 0)+(0, 0, 0)) = ((0, 0, 0), (0+0, 1+0, 0+0)) = ((0, 0, 0), (0, 1, 0))

((0, 1, 0))(1, 0, 0) = ((1, 0, 0), (0, 1, 0)+(1, 0, 0)) = ((1, 0, 0), (0+1, 1+0, 0+0)) = ((1, 0, 0), (1, 1, 0))

((0, 1, 0))(0, 0, 1) = ((0, 0, 1), (0, 1, 0)+(0, 0, 1)) = ((0, 0, 1), (0+0, 1+0, 0+1)) = ((0, 0, 1), (0, 1, 1))

((0, 1, 0))(1, 0, 1) = ((1, 0, 1), (0, 1, 0)+(1, 0, 1)) = ((1, 0, 1), (1+0, 1+0, 0+1)) = ((1, 0, 1), (1, 1, 1))

The cycles of the permutation g(0,0,1) are:

((0, 0, 1))(0, 0, 0) = ((0, 0, 0), (0, 0, 1)+(0, 0, 0)) = ((0, 0, 0), (0+0, 0+0, 1+0)) = ((0, 0, 0), (0, 0, 1))

((0, 0, 1))(1, 0, 0) = ((1, 0, 0), (0, 0, 1)+(1, 0, 0)) = ((1, 0, 0), (0+1, 0+0, 1+0)) = ((1, 0, 0), (1, 0, 1))

((0, 0, 1))(0, 1, 0) = ((0, 1, 0), (0, 0, 1)+(0, 1, 0)) = ((0, 1, 0), (0+0, 0+1, 1+0)) = ((0, 1, 0), (0, 1, 1))

((0, 0, 1))(1, 1, 0) = ((1, 1, 0), (0, 0, 1)+(1, 1, 0)) = ((1, 1, 0), (0+1, 0+1, 0+1)) = ((1, 1, 0), (1, 1, 1))

The Φ̃(Z/2Z × Z/2Z; S = {(1, 0, 0); (0, 1, 0); (0, 0, 1)}) is isomorphic to the
graph shown figure 1.

In the construction of the G-graph we consider the left action of the subgroup
H = 〈s〉x on G (s ∈ S) and the G-graph would have to be called left G-graph.
We can consider the right action, hence we have a right G-graph. The following
lemma justifies the designation of G-graph.

Lemma 1. Let Φr((G; S)) = (V1; E1; ε1) and Φl((G; S)) = (V2; E2; ε2) be the
right and left G-graphs of G. These two graphs are isomorphic.

144 A. Bretto et al.

Fig. 1. G-graph of the group Z/2Z × Z/2Z × Z/2Z generated with S =
{(1, 0, 0); (0, 1, 0); (0, 0, 1)}

Proof. Main idea of the proof:
Let x be an element of G. There exists just one y ∈ G such that x = ysi. Settle
f : V1 −→ V2 such that f((s)x) = y(s), hence f# is a bijection and (f, f#) is an
isomorphism.

4 Hamming Graphs Are G-Graphs

Definition 1. The vertices set of the Hamming graph, denoted by H(n, d) con-
sists of all d-tuples (x1, x2, · · · , xd), 0 ≤ xi ≤ n. Two vertices are an edge, if as
d-tuples, they agree in all except one coordinate. In other way:

– V (H(n, d)) = (Z/nZ)d.
– [(x1, x2, · · · , xd), (y1, y2, · · · , yd)] ∈ E(H(n, d)) ⇔ ∃!1 � i � d xi
= yi.

Example: H(2, 3) and H(4, 2) are Hamming graphs:

Some properties of Hamming’s graphs:

– H(n, d) is a regular graph with nd vertices and d(n−1)nd

2 edges;
– Each vertex has a degree equal to d(n − 1);

A New Property of Hamming Graphs and Mesh of d-ary Trees 145

The following set D(n, d) = {(i, i · · · , i, i︸ ︷︷ ︸
d

), 0 � i � n − 1} is a normal subgroup

of Z/nZ. Consequently B(n, d) = (Z/nZ)d

D(n,d) is a group.

Lemma 2. (B(n, d), +) is isomorphic to (Z/nZ)d−1.

Proof. Main idea of the proof:
Let x = (x1, x2, · · ·xd−1, xd) be an element in B(n, d). Settle Θ1 : B(n, d) →
(Z/nZ)d−1 such as Θ1(x) = (x1 − xd, x2 − xd, · · ·xd−1 − xd, 0).
Θ1 is an isomorphism of groups.

From now on we write each element in B(n, d) as x = (x1, x2, · · · , xd−1, xd).
Let ϕ : Z/dZ → Aut(B(n, d)) be the morphism q �→ ϕ(q) defined by:

ϕ(1)(x) = (x2, x3, · · · , xd, x1)
ϕ(2)(x) = (x3, x4, · · · , xd, x1, x2)
...
ϕ(i)(x) = (xi+1, xi+2, · · · , xd, x1, xi−1, xi)
...
ϕ(d)(x) = (x1, x2, · · · , xd) = ϕ(0) = x

This morphism defines an action on Z/dZ × B(n, d) �→ B(n, d) where ϕ(i)(x)
is the inverse circular permutation of i-coordinates, of an element of B(n, d) .
From now on we write i · x for ϕ(i)(x).

We settle G(n, d) = B(n, d) �k (Z/dZ) with ((x, k), (y, p)) ∈ (G(n, d))2 and
we can see that the following operation ” ♦ ”.

(x, k)♦(y, p) = (x + ϕ(k) · y, k + p) = (x + k · y, k + p) (1)

give rise to a group: (G(n, d),♦) defined as:

G(n, d) =
(Z/nZ)d

D(n, d)
�k (Z/dZ)

Lemma 3. Let S = {tk|tk ∈ G(n, d), tk = ((k, 0, 0 · · · , 0), 1), 0 � k � n − 1}.

(a) For all 1 � i � d we have tik = ((k, · · · k︸ ︷︷ ︸
i

, 0, · · · , 0), i) and the order of the

elements of S is d.
(b) The set S is a generating set for the group (G(n, d),♦).

Proof. Main idea of the proof:
To prove assertion (a) use induction.
To proving (b), we have :

(x, 0)♦tb0 = ((x + 0 · (0, 0, · · · , 0)), 0 + b) = (x, b) (2)

and:

(x, 0) = ((x1, 0, · · · , 0), 0)♦((0, x2, 0, · · · , 0), 0)♦ · · ·♦((0, 0, · · · , xd), 0) (3)

146 A. Bretto et al.

and we also have:

((0 · · · 0︸ ︷︷ ︸
i−1

xi0 · · · 0), 0) = (ti−1
n−xi

♦t
d−(i−1)
0)♦(tixi

♦td−i
0) (4)

From (2)+(3)+(4) we can see that each element of the group G(n, d) can be
written as a product of elements of S. So S is a generating set.

Lemma 4. Let Φ̃(G(n, d), S) be the right G-graph. We have the following
properties:

(a) For any vertex a ∈ Vtk
(Φ̃(G(n, d), S)), k ∈ {0, 1, 2, · · · , n − 1}:

a = ((x, 0), ((x, 0)♦tk), ((x, 0)♦t2k), · · · , ((x, 0)♦td−1
k))

(b) For two vertices of Φ̃(G(n, d), S), a = (x, 0)(tk) and a′ = (y, 0)(tj) the two
following assertions are equivalent:
(i) [a; a′] ∈ E(Φ̃(G(n, d), S))

(ii) y ∈ {x, x + (t, 0, · · · , 0), x + (t, t, · · · , 0), · · · , x + (t, t, · · · , t, 0)} with t ∈
{0, 1, 2, · · · , n − 1}.

Proof. Main idea of the proof:
We obtain:

((x + (k, · · · , k︸ ︷︷ ︸
b

, 0, 0, · · · , 0), b)♦td−b+i
k = (x, 0)♦tik

From above it is easy to see that (a) is true.
For (b) we show that y = x + (t, · · · , t︸ ︷︷ ︸

p

, 0, · · · , 0) with t = k − j.

Theorem 1. The G-graph Φ̃(G(n, d), S) is isomorphic to Cay((Z/nZ)d, S∗)
with:

S∗ = {cki|cki = (k, · · · , k︸ ︷︷ ︸
i

, 0, · · · , 0, k), 1 ≤ k ≤ n − 1, 0 ≤ i ≤ d − 1}

Proof. Main idea of the proof:
Settle:

Θ : Φ̃(G(n, d), S) → Cay((Z/nZ)d, S∗)

such that Θ(a) = (Θ1(x), k), Θ1 being defined in the proof of Lemma 2.
The application Θ is an isomorphism.
It is easy to see that S∗ is a generating set.
Let a ∈ Vtk

(Φ̃(G(n, d), S)) with a = (x, 0)(tk) and settle:

Θ : Φ̃(G(n, d), S) → Cay((Z/nZ)d, S∗)

such that Θ(a) = (Θ1(x), k), Θ1 being defined in the proof of Lemma 2.

A New Property of Hamming Graphs and Mesh of d-ary Trees 147

The application Θ is a bijection because:
Let a = (x, b)(tk) and a′ = (y, b)(tj) be two vertices of Φ̃(G(n, d), S). Let

us consider that Θ(a) = Θ(a′). Hence (Θ1(x), k) = (Θ1(y), j) so k = j and
Θ1(x) = Θ1(y). Because Θ1 is an isomorphism we have x = y. So Θ is injectif.
Both graphs have the same number of vertices.

Consequently Θ is a bijection.
The application Θ is a morphism because:
Let a = (x, b)(tk) and a′ = (y, b)(tj) be two vertices of Φ̃(G(n, d), S) and

suppose that [a; a′] ∈ E(Φ̃(G(n, d), S)).
We have Θ(a) = (Θ1(x), k) and Θ(a) = (Θ1(y), j) From the proof of Lemma

4 the two following assertions are equivalent:

(i) [a; a′] ∈ E(Φ̃(G(n, d), S))

(ii) y ∈ {x, x + (t, 0, · · · , 0), x + (t, t, 0, · · · , 0), · · · , x + (t, t, · · · , t, 0)}
with t = j − k

From Lemma 2 we have:
Θ1(y) = Θ1(x) + Θ1(j − k, j − k, · · · , j − k︸ ︷︷ ︸

i

, 0, 0, · · · , 0) =

Θ1(x) + (j − k, · · · , j − k︸ ︷︷ ︸
i

, 0, · · · , 0), i ∈ {1, 2, · · · , d − 1}. That leads to Θ(a′) =

(Θ1(y), j) = (Θ1(x) + (j − k, · · · , j − k︸ ︷︷ ︸
i

, 0, · · · , 0), k + j − k) = (Θ1(x), k) +

(j − k, · · · , j − k︸ ︷︷ ︸
i

, 0, · · · , 0, j − k) = Θ(a′) + cj−k,i

Settle:
x = (x1, · · · , xd) and y = (y1, · · · , yd) two vertices on Cay((Z/nZ)d, S∗). So
y = x + cki and this is equivalent to :
(y1, y2, · · · , yd) = (x1, x2, · · · , xd) + (k, · · · , k︸ ︷︷ ︸

i

, 0, · · · , 0, k). Hence (Θ1(y), yd) =

(Θ1(x) + (Θ1(k, · · · , k︸ ︷︷ ︸
i

, 0, · · · , 0), k + xd)) same with

(Θ1(y)) = (Θ1(x + (k, · · · , k︸ ︷︷ ︸
i

, 0, · · · , 0)), xd + k) and yd = xd + k.

Consequently we have y = x + (k, · · · , k︸ ︷︷ ︸
i−1

, k, 0, · · · , 0).

We conclude that: G-graph Φ̃(G(n, d), S) " Cay((Z/nZ)d, S∗).

Lemma 5. We have the following isomorphism:

Cay((Z/nZ)d, S∗) " Cay((Z/nZ)d, S′)

with the set S′ = {ei
k = (0, 0, · · · , 0︸ ︷︷ ︸

i−1

, k, 0, · · · , 0) and 1 � i � d, 0 � k � n − 1}.

148 A. Bretto et al.

Proof. It is obvious that the following application Θ2 : (Z/nZ)d → (Z/nZ)d such
as:

Θ2(cki) = eki k ∈ {0, 1, · · · , n − 1} i ∈ {1, 2, · · · , d}
is an isomorphism from ((Z/nZ)d, S∗) to ((Z/nZ)d, S′).

It follows that Cay((Z/nZ)d, S∗) " Cay((Z/nZ)d, S′).

Theorem 2. [15] The Cayley graph Cay((Z/nZ)d, S′) with the generating set
S′ defined above, is isomorphic to H(n, d).

Now we have the main result of this section:

Theorem 3. The G-graph Φ̃(G(n, d), S) is isomorphic to H(n, d) - the Ham-
ming graph.

Proof. Immediately from lemma 5 and theorem 1.

5 Mesh of d-ary Trees

The proofs in this section are straitforward from the proofs of Hamming graphs
are G-graphs section.

Let B an alphabet of d-letters and u a word on B. We denote |u| the length
of the word u. The mesh of d-ary trees MT (d, h) is the graph with the vertex
set V = {(u, v)||u| = h or |v| = h}, and [(u, v), (u′, v′)] ∈ E(MT (d, h)) if and
only if |u| = h ,u = u′ and v = v′λ or |v| = h ,v = v′ and u = u′λ with λ ∈ B.
Key properties of grid d-Tree graphs are as follows:

– Number of vertices Nv = dh(dh + 2 dh−1
d−1);

– Number of edges Ne = 2d(dh+1−1
d−1 − 1);

– Diameter D = 4h;
– The mesh of d-ary trees is not a Cayley graph;
– The mesh of d-ary trees is not vertex-transitive.

In this paper we are only interested in the mesh of d-ary trees on a 1-dimensional
mesh MT (d, 1). The following diagrams show MT (3, 1) and MT (4, 1):

A New Property of Hamming Graphs and Mesh of d-ary Trees 149

We consider the following group:

G(n, 2) = ((Z/nZ) × (Z/nZ)) �ϕ (Z/2Z)

with ϕ : Z/2Z → Aut((Z/nZ)×(Z/nZ)) the morphism defined by ϕ(1)(x1, x2) =
(x2, x1) and ϕ(0)(x1, x2) = (x1, x2). We denote by ” ♦ ” the operation on this
group.

Lemma 6. Let S = {t0 = ((0, 0), 1), t1 = ((1, 0), 0)}.

(a) The order of t0 is 2, the order of t1 is n.
(b) The set S is a generating set for the group G(n, 2).

Lemma 7. Let Φ̃(G(n, 2), S) be the right G-graph. We have the following
properties:

(a) For any vertex a ∈ Vtk
(Φ̃(G(n, 2), S)), k ∈ {0, 1}:

(i) For a ∈ Vt0 , a = (((x1, x2), 0); ((x1, x2), 1))
(ii) For a ∈ Vt1 :

a = ((x1, x2), 0)(t1) = ((0, x2), 1); ((1, x2), 1); · · · ; ((n − 1, x2), 1))

or a = ((x1, x2), 0)(t1) = ((x1, 0), 0); ((x1, 1), 0); · · · ; ((x1, n − 1), 0))

(b) For two vertices of Φ̃(G(n, 2), S):
a = ((x1, x2), k)(t0) and a′ = ((y1, y2), k)(t1), the two following assertions
are equivalent:
(i) [a; a′] ∈ E(Φ̃(G(n, 2), S))

(ii) y1 = x1 and k = 0 or y2 = x2 and k = 1.

Proof. We can easily see that ((x1, x2), 0)♦t0 = ((x1, x2) + 0(0, 0)), 0 + 1) =
((x1, x2), 1) and this leads to (a.a). In the same way we show ((x1, x2), 0)♦ti0 =
((x1, x2)+0(i, 0)), 0+1) = ((x1 +i, x2), 1), and also ((x1, x2), 1)♦ti0 = ((x1, x2)+
1(i, 0)), 1 + 1) = ((x1, x2 + i), 0). We can conclude that (a.ii) is true.

From the definition of a G-graph we know that an edge exists only between
one vertex a of V (t0) and one vertex a′ of V (t1). From above, we can easily see
that, for a′, the first element or the second from the group (x1, x2) has all the
values from 0 to n − 1. For the vertex a the third element takes all values in
Z/2Z. For an edge it is enough that (x1, x2) and (y1, y2) are equal. So from (a)
we can easily see that this leads to (b.ii).

Theorem 4. The G-graph Φ̃(G(n, 2), S) is isomorphic to MT (n, 1).

Proof. Let us consider a and a′ from lemma 7. Set Θ : Φ̃(G(n, 2), S) → MT (n, 1)
as: Θ(a) = (x1, x2) and Θ(a′) = (y1, e) for k = 0 or Θ(a′) = (e, y2) for k = 1
where e is the empty word. It is obvious that Θ is an isomorphism.

150 A. Bretto et al.

References

1. Babai, L.: Handbook of combinatorics. In: Automorphism groups, isomorphism,
reconstruction, ch. 27 (1994)

2. Bretto, A., Faisant, A.: Another way for associating a graph to a group.
Math.Slovaca 55(1), 1–8 (2005)

3. Bretto, A., Gilibert, L., Laget, B.: Symmetric and Semisymmetric Graphs Con-
struction Using G-graphs. In: Kauers, M. (ed.) International Symposium on Sym-
bolic and Algebraic Computation (ISSAC 2005), Beijing, China, July 24-27, 2005,
pp. 61–67. ACM press, New York (2005) ISBN:1-59593-095-7

4. Bretto, A., Gilibert, L.: G-graphs for the cage problem: a new upper bound. In:
International Symposium on Symbolic and Algebraic Computation (ISSAC 2007),
Waterloo, Ontario, Canada, July-29 August-1st 2007. ACM press, New York (2007)
ISBN:978-1-59593-743-8

5. Bretto, A., Faisant, A., Gillibert, L.: G-graphs: A new representation of groups.
Journal of Symbolic Computation 42(5), 549–560 (2007)

6. Cannon, J.J., Holt, D.F.: Automorphism group computation and isomorphism test-
ing in finite groups. Journal of Symbolic Computation 35(3), 241–267 (2003)

7. Cannon, J.J., Holt, D.F.: Computing conjugacy class representatives in permuta-
tion groups. Journal of Algebra 300(1), 213–222 (2006) MR2228644

8. Cooperman, G., Finkelstein, L., Sarawagi, N.: Applications of Cayley Graphs. In:
Sakata, S. (ed.) AAECC 1990. LNCS, vol. 508, pp. 367–378. Springer, Heidelberg
(1991)

9. Cooperman, G., Finkelstein, L.: New Methods for Using Cayley Graphs in Inter-
connection Networks. Discrete Applied Mathematics 37/38, 95–118 (1992)

10. Fraigniaud, P., Konig, J.-C., Lazard, E.: Oriented hypercubes. Networks 39(2),
98–106 (2002)

11. Zhang, G.-F., Gao, X.-S.: Spatial geometric constraint solving based on k-connected
graph decomposition. In: Proceedings of the ACM symposium on Applied comput-
ing Dijon, France 2006 SESSION: Geometric computing and reasoning (GCR), pp.
979–983. ACM Press, New York (2006)

12. The GAP Team, (06 May 2002), GAP - Reference Manual, Release 4.3,
http://www.gap-system.org

13. Lauri, J., Scapellato, R.: Topics in Graphs Automorphisms and Reconstruction,
London Mathematical Society Student Texts (2003)

14. Lauri, J.: Constructing graphs with several pseudosimilar vertices or edges. Discrete
Mathematics 267(1-3), 197–211 (2003)

15. Rockmore, D., Hordijk, W., Kostelec, P., Stadler, P.F.: Fast Fourier Transform for
Fitness Landscapes. Applied and Computational Harmonic Analysis 12(1), 57–76
(2002)

16. Sunil Chandran, L., Kavitha, T.: The carvingwidth of hypercubes. Discrete Math-
ematics 306(18), 2270–2274 (2006)

http://www.gap-system.org

An Interpolation Method That Minimizes an

Energy Integral of Fractional Order

H. Gunawan1, F. Pranolo1, and E. Rusyaman2

1 Analysis and Geometry Group, Faculty of Mathematics and Natural Sciences,
Bandung Institute of Technology, Bandung, Indonesia

hgunawan@math.itb.ac.id, fei101@students.itb.ac.id
2 Department of Mathematics, Faculty of Mathematics and Natural Sciences,

Padjadjaran University, Bandung, Indonesia
rusyaman@gmail.com

Abstract. An interpolation method that minimizes an energy integral
will be discussed. To be precise, given N + 1 points (x0, c0), (x1, c1), . . . ,
(xN , cN) with 0 = x0 < x1 < · · · < xN = 1 and c0 = cN = 0, we shall
be interested in finding a sufficiently smooth function u on [0, 1] that
passes through these N + 1 points and minimizes the energy integral
Eα(u) :=

∫ 1
0 |u(α)(x)|2dx, where u(α) denotes the fractional derivative of

u of order α. As suggested in [1], a Fourier series approach as well as
functional analysis arguments can be used to show that such a function
exists and is unique. An iterative procedure to obtain the function will
be presented and some examples will be given here.

1 Introduction

Many interpolation methods have been developed for many decades. For recent
results in interpolation, see for instance [3, 7, 8, 9, 15] and the references therein.
In [1], Alghofari discussed the following interpolation problem: Given N + 1
points (x0, c0), (x1, c1), . . ., (xN , cN) with 0 = x0 < x1 < · · · < xN = 1 and
c0 = cN = 0, find a continuously differentiable function u on [0, 1] that passes
through these N + 1 points and minimizes the energy integral

E2(u) :=
∫ 1

0

|u′′(x)|2dx.

To solve the problem, Alghofari used a Fourier series approach as well as func-
tional analysis arguments. In particular, he showed that the problem has a unique
solution and gave a hint to approximate the solution.

In this note, we shall generalize Alghofari’s results by replacing the energy
integral E2(u) with

Eα(u) :=
∫ 1

0

|u(α)(x)|2dx,

where u(α) denotes the fractional derivative of u of order α ≥ 0. We show that
for α > 1

2 , the problem has a unique solution u which is continuous on [0, 1].

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 151–162, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

152 H. Gunawan, F. Pranolo, and E. Rusyaman

In addition, an iterative procedure to obtain the solution will be presented and
some examples will be given.

Note that for α = 2, E2(u) represents the curvature (or the strain energy of
bending) of u and the solution to the problem is a cubic spline (see [4, 5, 12]).
For α = 1, E1(u) represents the tension (or the potential energy of axial load)
of u and the solution is a piecewise linear function. From this point of view, the
interpolation that we discuss here can be considered as a generalization of the
polynomial spline interpolation. Our results may be related to those in [14].

2 The Problem and Its Solution

We begin with the classical Fourier series discussion. Let u : [0, 1] → IR be a
continuous function with u(0) = u(1) = 0. If, for instance, u is piecewise smooth,
then u may be expressed as a Fourier sine series

u(x) =
∞∑

n=1

an sin nπx, x ∈ [0, 1],

where

an = 2
∫ 1

0

u(x) sin nπxdx, n = 1, 2, 3,

Parseval’s identity states that 2
∫ 1

0
|u(x)|2dx =

∑∞
n=1 a2

n. Further, if u is of class
C(k−1) and u(k−1) is piecewise smooth (so that u(k) exists except at finitely many
points and is piecewise continuous), then the Fourier sine coefficients an’s satisfy
the condition ∞∑

n=1

n2ka2
n < ∞. (1)

Conversely, if the coefficients an’s satisfy the condition (1), then the functions
u, . . . , u(k−1) are absolutely continuous and u(k) is square integrable with

‖u(k)‖2
2 := 2

∫ 1

0

|u(k)(x)|2dx = π2k
∞∑

n=1

n2ka2
n

(see, for instance, [6, 13]). All these tell us that we may identify u(k) with the
square summable sequence (nkan). Here nkan’s are the Fourier coefficients of
u(k), from which we can recover u(k) almost everywhere through the formula

u(k)(x) = πk
∞∑

n=1

nkan sin(nπx + k π
2).

Note that πknk sin(nπx + k π
2) is nothing but the k-th derivative of sin(nπx).

Inspired by the above facts, we may define the fractional derivative of u of
order α ≥ 0, denoted by u(α), almost everywhere by the following formula

u(α)(x) = πα
∞∑

n=1

nαan sin(nπx + απ
2),

An Interpolation Method That Minimizes an Energy Integral 153

provided that
∑∞

n=1 n2αa2
n < ∞. Notice that παnα sin(nπx + απ

2) is the frac-
tional derivative of sin nπx of order α (see [11]). Here we may check that the
family {sin(nπx + απ

2)} : n ∈ IN} forms an orthogonal system and that

2
∫ 1

0

|u(α)(x)|2dx = π2α
∞∑

n=1

n2αa2
n.

Accordingly, u(α) is a square integrable function on [0, 1], which may be identified
with the square summable sequence (nαan).

Our problem is the following. Given N+1 points (x0, c0), (x1, c1), . . ., (xN , cN)
with 0 = x0 < x1 < · · · < xN = 1 and c0 = cN = 0, we wish to find an
interpolant u which is continuous on [0, 1] and minimizes the energy integral

Eα(u) :=
∫ 1

0

|u(α)(x)|2dx. (2)

To solve this problem, we consider the space W = Wα consisting of all func-
tions u on [0, 1] of the form u(x) =

∑∞
n=1 an sin nπx with

∑∞
n=1 n2αa2

n < ∞. On
W , we define the inner product

〈u, v〉 :=
∞∑

n=1

n2αanbn,

where an’s and bn’s are the coefficients of u and v, respectively. Here mini-
mizing the integral

∫ 1

0 |u(α)(x)|2dx in W is equivalent to minimizing the sum∑∞
n=1 n2αa2

n =: ‖u‖2. With respect to the above inner product, W is complete,
that is, (W, 〈·, ·〉) is a Hilbert space. Indeed, given a Cauchy sequence in W , one
may show that it is convergent to an element in W .

Hereafter, we shall assume that α > 1
2 , unless otherwise stated. As we shall

see, this is not only a sufficient condition but also necessary to have a continuous
solution. Let us first prove the following lemma.

Lemma 2.1. Suppose that ‖um − u‖ → 0 as m → ∞. Then, (um) converges
uniformly to u on [0, 1]. More generally,

(
u

(β)
m

)
converges uniformly to u(β) on

[0, 1] for 0 ≤ β < α − 1
2 .

Proof. For m ∈ IN, let am,n’s and an’s be the coefficients of um and u. Let
0 ≤ β < α − 1

2 . Then, for each x ∈ [0, 1], we have

|u(β)
m (x) − u(β)(x)| =

∣∣∣πβ
∞∑

n=1

nβ(am,n − an) sin nπx
∣∣∣

≤ πβ
[∞∑

n=1

n2α(am,n − an)2
]1/2[∞∑

n=1

sin2 nπx

n2(α−β)

]1/2

≤ C‖um − u‖,

where C is independent of x. Hence
(
u

(β)
m

)
converges uniformly to u(β). ��

154 H. Gunawan, F. Pranolo, and E. Rusyaman

Corollary 2.2. If u ∈ W , then u(β) is continuous for 0 ≤ β < α − 1
2 . In

particular, every function in W is continuous.

Proof. For each β with 0 ≤ β < α− 1
2 , u(β) is a limit, and hence a uniform limit,

of its partial sums. Now since the partial sums are continuous, u(β) too must be
continuous. ��

Now consider the subspace V of W consisting of all functions u that vanish at
xi, i = 1, ..., N − 1; that is,

V := {u ∈ W : u(xi) = 0, i = 1, . . . , N − 1}.

Meanwhile, let U be the subset of W given by

U := {u ∈ W : u(xi) = ci, i = 1, . . . , N − 1}.

Then, as for the case α = 2 discussed in [1], we have:

Lemma 2.3. V is closed, while U is nonempty, closed and convex.

Proof. Let u be the limit of a convergent sequence (um) in V . Then, for each
i = 1, . . . , N−1, it follows from Lemma 2.1 that u(xi) = 0 because um(xi) = 0 for
every m ∈ IN. Therefore V is closed. Similarly, U is closed. Next, it is nonempty
because one can easily find a function u0(x) =

∑N−1
j=1 bj sin jπx satisfying the

following system of equations
N−1∑

j=1

bj sin jπxi = ci, i = 1, . . . , N − 1.

Finally, if u1 and u2 in U , then αu1 + βu2 ∈ U provided that α + β = 1. This
tells us particularly that U is convex. ��

The following theorem is a generalization of Alghofari’s result [1].

Theorem 2.4. The minimization problem (2) has a unique solution in W , and
the solution is given by

u = u0 − projV (u0),

where u0 is an arbitrary element of U and projV (u0) denotes the orthogonal
projection of u0 on V .

Proof. Let u0 be an element in U . Then, for any v ∈ V , u0 − v is also in U .
Since U is a convex subset of W , there must exist a unique element v0 ∈ V such
that ‖u0 − v0‖ is of smallest norm [2]. Thus u := u0 − v0 is the unique solution
in W for our minimization problem (2). By the theory of best approximation
in Hilbert spaces, the element v0 ∈ V for which ‖u0 − v0‖ is minimized is the
orthogonal projection of u0 on V , that is, v0 = projV (u0). ��

As we have indicated before, to find an element in U is easy. What is rather
difficult is to find an orthonormal basis for V . In the next section, we develop a
procedure to find an initial element in U and an orthonormal basis for V , and
to obtain the minimum solution iteratively through finite computations.

An Interpolation Method That Minimizes an Energy Integral 155

3 The Procedure to Obtain the Solution

Given N + 1 points (x0, c0), (x1, c1), . . ., (xN , cN) with 0 = x0 < x1 < · · · <
xN = 1, we can obtain (or approximate) the solution to (2) in W through the
following steps.

Step 1. To obtain an initial element in U , we solve the system of equations

N−1∑

j=1

bj sin jπxi = ci, i = 1, . . . , N − 1,

for the coefficients bj’s. The (N − 1) × (N − 1) matrix [sin jπxi]i,j is always
nonsingular (see [2]), and so the above system has a solution. Having found bj ’s,
we put u0(x) =

∑N−1
j=1 bj sin jπx.

Step 2. To obtain a basis for V , we consider the system of equations

∞∑

n=1

an sinnπxi = 0, i = 1, . . . , N − 1,

each of which contains infinitely many unknowns an’s. However, we can tackle
this system by writing it as

N−1∑

j=1

aj sin jπxi = −
∞∑

n=N

an sin nπxi, i = 1, . . . , N − 1.

From this we can express a1, . . . , aN−1 in terms of an, n ≥ N .
Now if (a1, . . . , aN−1, aN , aN+1, aN+2 . . .) stands for

∑∞
n=1 an sin nπx, then by

expressing a1, . . . , aN−1 in terms of an with n ≥ N , every element in V can be
expressed as

aN (∗, . . . , ∗, 1, 0, 0, 0, . . .) + aN+1(∗, . . . , ∗, 0, 1, 0, 0, . . .)+
+ aN+2(∗, . . . , ∗, 0, 0, 1, 0, . . .) + aN+2(∗, . . . , ∗, 0, 0, 0, 1, . . .) + · · · ,

where the first N − 1 terms marked by asterisks come from a1, . . . , aN−1. The
following sequence form a basis for V :

v1 := (∗, . . . , ∗, 1, 0, 0, 0, . . .), v2 := (∗, . . . , ∗, 0, 1, 0, 0, . . .),
v3 := (∗, . . . , ∗, 0, 0, 1, 0, . . .), v4 := (∗, . . . , ∗, 0, 0, 0, 1, . . .),

Step 3. The minimum solution u is given by u = u0 − projV (u0). To find
(or approximate) it, we compute the orthogonal projection of u0 on the sub-
space Vm := span{v1, . . . , vm} for m = 1, 2, 3, . . . iteratively. (But since vn’s
may not be orthogonal, we might need to orthogonalize them first.) Now if
um := u0 − projVm

(u0), then the sequence (um) approximates the minimum
solution u. Indeed, ‖um‖ gets smaller and ‖um − u‖ → 0 as m → ∞.

156 H. Gunawan, F. Pranolo, and E. Rusyaman

In practice, we may stop the iteration process at uM basically when we have
‖uM − uM−1‖ < ε for a given value of ε. Note that the larger the value of α the
faster the convergence of (um).

To illustrate how our procedure works, we present a few examples. The first
one is simple; the reader can follow the computations in details.

Example 3.1. (a) Suppose that we wish to find a continuous, piecewise smooth
function u on [0, 1] that minimizes the integral

E1(u) :=
∫ 1

0

|u′(x)|2 dx, (3)

subject to the condition that u(0) = u(1) = 0 and u
(

1
2

)
= 1.

For this, consider the subspace V of W consisting of all functions u that vanish
at 1

2 ; that is,
V := {u ∈ W : u

(
1
2

)
= 0},

and the subset U of W given by

U := {u ∈ W : u
(

1
2

)
= 1}.

Our initial approximation is u0(x) = sinnπx. Next, if v(x) :=
∑∞

n=1 an sin nπx
is in V , then v

(
1
2

)
= 0 is equivalent to

a1 − a3 + a5 − a7 + − · · · = 0,

for which we get
a1 = a3 − a5 + a7 − a9 + − · · · .

Hence, every element (a1, a2, a3, a4, a5, . . .) in V can be expressed as

a2(0, 1, 0, 0, 0, . . .) + a3(1, 0, 1, 0, 0, . . .) +
+ a4(0, 0, 0, 1, 0, . . .) + a5(−1, 0, 0, 0, 1, . . .) + · · · .

From this we get the following basis for V :

v1 := (0, 1, 0, 0, 0, . . .), v2 := (1, 0, 1, 0, 0, . . .),
v3 := (0, 0, 0, 1, 0, . . .), v4 := (−1, 0, 0, 0, 1, . . .),

If one carries out Step 3 as prescribed, one will get u1 = (1, 0, 0, 0, 0, . . .), u2 =
u3 = 9

10 (1, 0,− 1
32 , 0, 0, . . .), and so on. The limiting solution is

u =
8
π2

(1, 0,− 1
32

, 0,
1
52

, . . .).

Alternatively, one can compute the orthogonal complement of u0 with respect
to V directly as follows. If u = (b1, b2, b3, . . .) is orthogonal to V , then u ⊥ vm

for each m ∈ IN, and so b2, b4, b6, . . . must be equal to 0 and

b1 = −32b3 = 52b5 = −72b7 = · · · .

An Interpolation Method That Minimizes an Energy Integral 157

Hence u = b1(1, 0,− 1
32 , 0, 1

52 , . . .), that is,

u(x) = b1

(
sin πx − 1

32
sin 3πx +

1
52

sin 5πx − 1
72

sin 7πx + − · · ·
)
.

But u
(

1
2

)
= 1 gives

b1 =
(∞∑

n=1

1
(2n − 1)2

)−1

=
8
π2

,

and therefore

u(x) =
8
π2

(
sin πx − 1

32
sin 3πx +

1
52

sin 5πx − 1
72

sin 7πx + − · · ·
)
.

Notice that this is nothing but the Fourier sine series of the piecewise linear
function f given by

f(x) =
{

2x, 0 ≤ x ≤ 1
2

2(1 − x), 1
2 < x ≤ 1.

The difference between the sequence (um) and the Fourier partial sums is that
each um passes through the point

(
1
2 , 1
)

while the Fourier partial sums do not.

(b) In general, given N + 1 points (x0, c0), (x1, c1), . . ., (xN , cN) with 0 =
x0 < x1 < · · · < xN = 1, the solution to the minimization problem (2) for α = 1
is the Fourier sine series of the piecewise linear function f for which f(xi) = ci

and f is linear on each subinterval [xi−1, xi].
For example, let xi = i

4 , i = 0, . . . , 4, and c0 = 0, c1 = 7
10 , c2 = 1,

c3 = 3
10 , c4 = 0. With a computer program, we apply our procedure and get

a sequence (um) that approximates the solution in W . We stop the iterations
at uM basically when ‖uM − uM−1‖ < ε. For ε = 0.01, the iterations stop at
u182. Figure 1 shows the graphs of u0, u5, u30, and uM = u182, which clearly
indicate that the limiting series must be that of the piecewise linear function
passing through the points (xi, ci), i = 0, . . . , 4.

For α = 1, one may observe that the piecewise linear function f that passes
through the given points always solves the minimization problem (2). This fol-
lows from the following fact.

Fact 3.2. On every interval [a, b] where u(a) and u(b) are fixed, the integral∫ b

a |u′(x)|2dx is minimized (among continuously differentiable functions u) if and
only if u is linear.

Proof. Let m := u(b)−u(a)
b−a . Then, by the Fundamental Theorem of Calculus, we

have
∫ b

a

|u′(x) − m|2dx =
∫ b

a

|u′(x)|2dx − 2m

∫ b

a

u′(x) dx + m2(b − a)

=
∫ b

a

|u′(x)|2dx − 2m[u(b) − u(a)] + m2(b − a)

=
∫ b

a

|u′(x)|2dx − m2(b − a).

158 H. Gunawan, F. Pranolo, and E. Rusyaman

x

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Fig. 1. α = 1; u(0) = 0, u
(1

4

)
= 7

10 , u
(1

2

)
= 1, u

(3
4

)
= 3

10 , u(1) = 0; ε = 0.01

Hence
∫ b

a |u′(x)|2dx ≥
∫ b

a m2 dx, and
∫ b

a |u′(x)|2dx is minimized if and only if
u′(x) = m for every x in [a, b]; that is, if and only if u is linear. ��

Example 3.3. Suppose that we wish to find a continuous function u that is
twice differentiable almost everywhere on [0, 1] and minimizes the integral

E2(u) :=
∫ 1

0

|u′′(x)|2 dx, (4)

subject to the condition that u(0) = u(1) = 0 and u
(

1
2

)
= 1.

Then, as in Example 3.1 (a), we will get

u(x) =
96
π4

(
sin πx − 1

34
sin 3πx +

1
54

sin 5πx − 1
74

sin 7πx + − · · ·
)
,

which is the Fourier sine series of the cubic spline

f(x) =
{

3x − 4x3, 0 ≤ x ≤ 1
2

3(1 − x) − 4(1 − x)3, 1
2 < x ≤ 1.

An Interpolation Method That Minimizes an Energy Integral 159

In the next examples, we apply our procedure for fractional α′s and we see what
happens particularly when α > 1 and 1

2 < α < 1.

Example 3.4. (a) Suppose that α = 1.5 and we wish to find a sufficiently
smooth function u on [0, 1] that minimizes the integral Eα(u), subject to the
condition that u(0) = u(1) = 0 and u

(
1
2

)
= 1.

Compared to Example 3.1(a), the function u here must be smoother at 1
2 .

(From Lemma 2.2, we know that u has the fractional derivative uβ of order
β < 1 which is continuous on [0, 1].) With a computer program, we apply our
procedure with ε = 0.01 and the iterations stop at u52. Note that the convergence
of (um) here is faster than that in Example 3.1(a). Figure 2 shows the graph of
the approximate solution.

(b) Suppose now that α = 0.6 and we wish to find a continuous function
u on [0, 1] that minimizes the integral Eα(u), subject to the condition that
u(0) = u(1) = 0 and u

(
1
2

)
= 1.

As one would expect, the function u now will be less smooth at 1
2 . Again, with

a computer program, we apply our procedure with ε = 0.05 and the iterations
stop at u76 (we use a relatively large value of ε because the rate of convergence of
(um) is expected to be low for small α). The graph of the approximate solution
is shown in Figure 3.

1

0.8

0.6

0.4

0.2

0

x

10.80.60.40.20

Fig. 2. α = 1.5; u(0) = 0, u
(1

2

)
= 1, u(1) = 0; ε = 0.01

160 H. Gunawan, F. Pranolo, and E. Rusyaman

0.6

0.4

0.2

0

x

10.80.60.40.20

1

0.8

Fig. 3. α = 0.6; u(0) = 0, u
(1

2

)
= 1, u(1) = 0; ε = 0.05

Remark. Our procedure also works for an energy functional which is a linear
combination of several Eα’s with at least one of the α′s is greater than 1

2 . More-
over, we have been successful in extending our method to solve an analogous
problem in 2-dimensional setting.

4 What Happens When 0 ≤ α ≤ 1
2

Suppose that 0 ≤ α ≤ 1
2 and we are trying to find a continuous function u on

[0, 1] that minimizes the integral Eα(u), subject to the condition that u(0) =
u(1) = 0 and u

(
1
2

)
= 1.

To solve this problem, we consider the space W consisting of all functions u
on [0, 1] of the form u(x) =

∑∞
n=1 an sin nπx with

∑∞
n=1 n2αa2

n < ∞, equipped
with the inner product

〈u, v〉 :=
∞∑

n=1

n2αanbn,

where an’s and bn’s are the coefficients of u and v, respectively.
As in Example 3.1, we consider the subspace V of W consisting of all functions

u that vanish at 1
2 ; that is,

V := {u ∈ W : u
(

1
2

)
= 0},

An Interpolation Method That Minimizes an Energy Integral 161

and the subset U of W given by

U := {u ∈ W : u
(

1
2

)
= 1}.

If (a1, a2, a3, . . .) ∈ V , then a1 − a3 + a5 − a7 + − · · · = 0. Accordingly, the
following vectors

v1 := (0, 1, 0, 0, 0, . . .), v2 := (1, 0, 1, 0, 0, . . .),
v3 := (0, 0, 0, 1, 0, . . .), v4 := (−1, 0, 0, 0, 1, . . .), . . .

form a basis for V .
As we can see, the above vectors also span W . Indeed, if u = (b1, b2, b3, . . .) is

orthogonal to V , then u ⊥ vm for each m ∈ IN, and so b2, b4, b6, . . . are all 0 and

b1 = −32αb3 = 52αb5 = −72αb7 = · · · .

Hence u = b1(1, 0,− 1
32α , 0, 1

52α , . . .). But then

‖u‖2 = b2
1

(
1 +

1
32α

+
1

52α
+ · · ·
)

< ∞ if and only if b1 = 0.

This means that V ⊥ = {0} or V = W . (In the infinite dimensional case, an
equation like a1 −a3 +a5 −a7 +− · · · = 0 does not have to define a hyperplane.)

Consequently, starting with our initial approximation u0 = (1, 0, 0, 0, . . .),
we will end up with u = (0, 0, 0, 0, . . .) or u(x) = 0 almost everywhere. Our
procedure guarantees that the function u will satisfy u

(
1
2

)
= 1; but obviously u

cannot be continuous at 1
2 .

Acknowledgement. H. Gunawan and F. Pranolo are supported by ITB Re-
search Program No. 174/ K01.07/PL/2007. We are grateful to Dr. A.R. Algho-
fari for useful discussion about the subject. We also thank the reviewers for their
comments on the earlier version of this paper.

References

[1] Alghofari, A.R.: Problems in Analysis Related to Satellites, Ph.D. Thesis, The
University of New South Wales, Sydney (2005)

[2] Atkinson, K., Han, W.: Theoretical Numerical Analysis. Springer, New York
(2001)

[3] Coleman, J.P.: Mixed interpolation methods with arbitrary nodes. J. Comput.
Appl. Math. 92, 69–83 (1998)

[4] de Boor, C.: A Practical Guide to Splines. Springer, New York (2001)
[5] Farouki, R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable.

Springer, New York (2008)
[6] Folland, G.B.: Fourier Analysis and Its Applications. Wadsworth & Brooks/Cole,

Pacific Grove (1992)
[7] Jiang, T., Evans, D.J.: A discrete trigonometric interpolation method. Int. J.

Comput. Math. 78, 13–22 (2001)

162 H. Gunawan, F. Pranolo, and E. Rusyaman

[8] Kim, K.J.: Polynomial-fitting interpolation rules generated by a linear functional.
Commun. Korean Math. Soc. 21, 397–407 (2006)

[9] Kozak, J., Žagar, E.: On geometric interpolation by polynomial curves. SIAM J.
Numer. Anal. 42, 953–967 (2004)

[10] Langhaar, H.L.: Energy Methods in Applied Mechanics. John Wiley & Sons, New
York (1962)

[11] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York
(1974)

[12] von Petersdorff, T.: Interpolation with polynomials and splines, an applet (Novem-
ber 2007), http://www.wam.umd.edu/∼petersd/interp.html

[13] Pinsky, M.A.: Introduction to Fourier Analysis and Wavelets. Brooks/Cole, Pacific
Grove (2002)

[14] Unser, M., Blu, T.: Fractional splines and wavelets. SIAM Review 42, 43–67 (2000)
[15] Wallner, J.: Existence of set-interpolating and energy-minimizing curves. Comput.

Aided Geom. Design 21, 883–892 (2004)

http://www.wam.umd.edu/~petersd/interp.html

Solving Biomechanical Model Using Third-Order

Runge-Kutta Methods

R.R. Ahmad1,�, A.S. Rambely1, and L.H. Lim2

1 School of Mathematical Sciences, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Tel.: +60 3 89213716; Fax: +60 3 89254519
{rozy,asr}@ukm.my

2 Maths Dept, Universiti Tunku Abdul Rahman, Petaling Jaya, Selangor, Malaysia
kellylimlh@yahoo.com
http://www.ukm.my

Abstract. A certain biomechanical model involves ordinary differential
equations. This research focuses on solving a biomechanical model of
a cyclist coasting downhill. The objective of this study is to establish
the velocity of the model, using two numerical methods, i.e., the third-
order Runge-Kutta methods. The two methods are the existing classical
Runge-Kutta and a modified Runge-Kutta method formed by Wazwaz.
The numerical results obtained from these two methods are compared
with the exact solution and the relative errors are produced.

Keywords: Biomechanics problem, Runge-Kutta, Modified Runge-
Kutta.

1 Introduction

Ordinary differential equations arise frequently in almost every discipline of
science and engineering, such as biochemistry, biomedical system, weather pre-
diction, mathematical biology and electronics, as a result of modeling and sim-
ulation activities. Numerical methods are techniques for solving these ordinary
differential equations to give approximate solutions. These methods can be used
not only to solve complicated problems such as the non-linear differential equa-
tions which usually do not have analytical solution but it also can solve func-
tions that require a substantial computation. One of the widely used numerical
methods is the Runge-Kutta methods, which comprise the second-order, third-
order and fourth-order Runge-Kutta methods. This study focuses on the classical
third-order Runge-Kutta method which is applied to a biomechanical problem in
order to get the approximate numerical solution. The third-order Runge-Kutta
method [1] is represented by

yn+1 = yn +
1
6
K1 +

4
6
K2 +

1
6
K3

� Corresponding author.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 163–168, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ukm.my

164 R.R. Ahmad, A.S. Rambely, and L.H. Lim

with

K1 = hf (tn, yn)
K2 = hf

(
tn + 1

2h, yn + 1
2K1

)

K3 = hf (tn + h, yn − K1 + 2K2) .

The comparison to this third-order method is a modified third-order Runge-
Kutta method [3], which utilized the geometric and arithmetic mean, i.e.

(geometric mean)2

arithmetic mean

in the construction of the formula. This modified third-order Runge-Kutta
method created by Wazwaz [3] can be written in the form of

yn+1 = yn + h

(
k1k2

k1 + k2
+

k2k3

k2 + k3

)

with

k1 = hf (tn, yn)
k2 = hf

(
tn + 2

3h, yn + 2
3k1

)

k3 = hf
(
tn + 2

3h, yn − 2
3k1 + 4

3k2

)

These two methods can be use to obtained approximate numerical solution in
biomechanics models such as cycling, jumping, bending, smashing and golfing.
The objective of this research is to determine the velocity of a cyclist coast-
ing downhill using the classical third-order Runge-Kutta method and compare
the numerical outcomes to the results obtained using the modified third-order
Runge-Kutta method by Wazwaz [3]. Relative errors are calculated by matching
up the numerical solutions with the exact solutions in order to deduce whether
classical third-order Runge-Kutta method or the modified third-order Runge-
Kutta method [3] will give a better numerical solution.

2 The Biomechanics Model of a Cyclist

Cycling is a sport activity which provides a lot of benefit to a cyclist such as
to maintain a healthy life style, stabilize heart beating and decrease the risk of
getting cardiovascular illness. The model used in this study is a cyclist coasting
downhill with the assumption that there is no friction acting in it. All of the
components on the surface are force and movement components. Therefore all
the forces acting on the cyclist are gravitational force, normal force and air force.
Figure 1 shows the body diagram of the model. The acceleration’s equation of a
cyclist coasting downhill is

a = g sin α − k

m
v2 (1)

Solving Biomechanical Model Using Third-Order Runge-Kutta Methods 165

x

FN Fx

mg

α

yFair resistance

Fig. 1. Body diagram of a cyclist coasting downhill

with a representing acceleration of the cyclist, g is the gravitation acceleration,
α is the angle of the hill from horizontal line, m is total mass of the bicycle and
cyclist, k is the constant value of air resistance and ν is the velocity of cyclist
coasting downhill. Since acceleration, a is the differentiation of velocity with
respect to time, t that is

a = v ′ (t)

Therefore equation (1) can be written as

v′ = g sin α − k

m
v2

with the exact solution for this model is given by

v =

√
mg sin α

k
tanh

(
√

g sin α

√
k√
m

t

)

3 Numerical Solution

The values of g, m, α and k that had been chosen to solve this model are g =
9.81ms−1, m = 75kg, α = 100 = 0.17453 rad and k = 0.135Nm−1 where the
cyclist is at 1000 m altitude. Therefore equation (1) becomes

v ′ = 9.81 sin 100 − 0.135
75

v2

with exact solution

v =

√
735.75 sin100

0.135
tanh

(√
1.32435 sin100

75
t

)

166 R.R. Ahmad, A.S. Rambely, and L.H. Lim

Table 1. Exact solution and relative errors for each method

t Exact value RK3 Relative Error 1 RK3WW Relative Error 2

0 0.0000000000 0.0000000000 0.0000000E+00 0.0000000000 0.0000000E+00
10 15.3320065707 15.3321322126 1.2564185E-04 15.3320610377 5.4466989E-05
20 24.0316037944 24.0318581084 2.5431399E-04 24.0316948026 9.1008171E-05
30 27.4773130788 27.4775138952 2.0081640E-04 27.4773749250 6.1846147E-05
40 28.6424478483 28.6425552281 1.0737976E-04 28.6424779292 3.0080928E-05
50 29.0148517740 29.0148996642 4.7890192E-05 29.0148644389 1.2664924E-05
60 29.1317165822 29.1317360048 1.9422591E-05 29.1317215348 4.9526618E-06
70 29.1681782756 29.1681857238 7.4481887E-06 29.1681801290 1.8534229E-06
80 29.1795336964 29.1795364505 2.7540841E-06 29.1795343700 6.7358290E-07
90 29.1830681679 29.1830691606 9.9269620E-07 29.1830684076 2.3969770E-07
100 29.1841681089 29.1841684600 3.5111190E-07 29.1841681929 8.3948301E-08
110 29.1845103960 29.1845105184 1.2238950E-07 29.1845104251 2.9034901E-08
120 29.1846169095 29.1846169516 4.2170598E-08 29.1846169194 9.9410968E-09

0.0000000E+00

5.0000000E-05

1.0000000E-04

1.5000000E-04

2.0000000E-04

2.5000000E-04

3.0000000E-04

0 20 40 60 80 100 120

Time,t

R
el

at
iv

e
E

rr
o

rs

RK3 RK3WW

Fig. 2. Relative errors for each method

is considered over the range of time 0≤t≤120. Using Mathematica software [4]
with step size h = 1, the numerical results of every 10 steps using the classical
third-order Runge-Kutta method (RK3) and the Wazwaz’s [3] modified third-
order Runge-Kutta method (RK3WW) is exhibited. For comparison, the relative
errors are attained using both third-order Runge-Kutta methods as shown in
Figure 2 with the exact solution (see Table 1).

Several different step sizes had also been chosen to obtain numerical solutions
and relative errors for both third-order Runge-Kutta methods at time t = 120s
as shown in Figure 3 (see also Table 2).

Solving Biomechanical Model Using Third-Order Runge-Kutta Methods 167

 0

5.00E-08

1.000E-07

1.50E-07

2.00E-07

2.50E-07

3.00E-07

3.50E-07
4.00E-07

2 1/2 1/4 1/6 1/8 1/10

Step size

R
el

at
iv

e
E

rr
o

r

RK3WWRK3

Fig. 3. Relative errors for each method at time t = 120s

Table 2. Exact solution and relative errors for each method at time t = 120s

Step
size Exact value RK3 Relative Error 3 RK3WW Relative Error 4

2 29.184611747224 29.184613217487 3.6697680E-07 29.184611500211 5.0780301E-08
1 29.184611747224 29.184616951641 4.2170598E-08 29.184616919412 9.9410968E-09
1/2 29.184611747224 29.184616914519 5.0482001E-09 29.184616911493 2.0220980E-09
1/3 29.184611747224 29.184616910945 1.4742980E-09 29.184616910138 6.6679817E-10
1/4 29.184611747224 29.184616910088 6.1749716E-10 29.184616909766 2.9490010E-10
1/5 29.184611747224 29.184616909786 3.1479885E-10 29.184616909626 1.5509727E-10
1/6 29.184611747224 29.184616909652 1.8169999E-10 29.184616909562 9.1297636E-11
1/7 29.184611747224 29.184616909585 1.1419843E-10 29.184616909529 5.8197003E-11
1/8 29.184611747224 29.184616909547 7.6397555E-11 29.184616909510 3.9300119E-11
1/9 29.184611747224 29.184616909524 5.3599791E-11 29.184616909499 2.7799985E-11
1/10 29.184611747224 29.184616909510 3.9097614E-11 29.184616909491 2.0399682E-11

4 Conclusion

This research generally discusses about a biomechanical model of a cyclist coast-
ing downhill, which is solved using two different third-order Runge-Kutta meth-
ods namely, the classical third-order Runge-Kutta and the modified third-order
Runge-Kutta methods. The numerical results obtained are compared between
both methods. The numerical solutions obtained using the modified third-order
Runge-Kutta method [3] gives better numerical results when compared to the
classical third-order Runge-Kutta method. The results of this study also conclude
that both third-order Runge-Kutta methods can be utilized to obtain numerical
solutions for the biomechanical model. The results show excellent accuracy of
both methods as compared with the exact solutions.

Acknowledgement. The financial support received from Universiti
Kebangsaan Malaysia under the Research University grant (Project code: UKM-
GUP-TMK-07-02-107) is gratefully acknowledged.

168 R.R. Ahmad, A.S. Rambely, and L.H. Lim

References

1. Rao, S.S.: Applied Numerical Methods for Engineers and Scientists. Prentice Hall,
New Jersey (2002)

2. Nigg, B.M., Herzog, W. (eds.): Biomechanics of the Musculo-Skeletal system. John
Wiley and Sons, England (2001)

3. Wazwaz, A.-M.: A Modified Third-order Runge-Kutta method. Appl. Math Let-
ter. 3(3), 123–125 (1990)

4. Wolfram, S.: Mathematica: A System For Doing Mathematics By Computer,2nd

edn. Addison-Wesley, Reading (1991)

An Efficient Fourth Order Implicit Runge-Kutta

Algorithm for Second Order Systems

Basem S. Attili

University of Sharjah
Mathematics Department

P. O. Box 27272
Sharjah - United Arab Emirates

b.attili@uaeu.ac.ae

Abstract. We will present an algorithmic approach to the implementa-
tion of a fourth order two stage implicit Runge-Kutta method to solve
periodic second order initial value problems. The systems involved will
be solved using some type of factorization that usually involves both
complex and real arithmetic. We will consider the real type case which
will be efficient and leads to a system that is one fourth the size of simi-
lar systems using normal implicit Runge-Kutta method. We will present
some numerical examples to show the efficiency of the method.

1 Introduction

The problem under consideration is the implicit second order initial value prob-
lem of the form

y′′ = f(t, y); t ≥ a (1)
y(a) = ya; y′(a) = y′

a

where f : R × Rn −→ Rn. In applied sciences, problems of this form arise in
nonlinear oscillation problems where they have the form

My′′ = f(t, y); t > 0; y(0) and y′(0) given (2)

with M a positive definite n×n matrix called the mass matrix and f is a differ-
entiable function. They may also arise in other applied sciences and engineering
such as structural mechanics, see Carpenter et. al.[5]. The solution to (2) is usu-
ally oscillatory. When numerical methods are applied to test problems of the
form y′′ = −wy; w > 0 stability problems arise since the general solution is of
the form y = A cos(wt + α), see Burder[3] and Sharp, Fine and Burrage[19].

This problem was treated by several authors using different numerical meth-
ods and analysis. We mention for example well posed problems that have some
singularities at some boundaries were treated by Attili et. al.[1] who considered
explicit Runge-Kutta methods for such singular problems. Sharp et. al.[19] devel-
oped one class of numerical methods based on Runge-Kutta Nystrom methods.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 169–178, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

170 B.S. Attili

They have appropriate stability and oscillation properties. For error analysis see
de-Swart and Soderlind[10] and Olsson and Soderlind[15]. Cash [6,7] developed
a p-stable method for periodic initial value problems. Others like Chawla[8] de-
veloped an unconditionally stable Noumerov-type method, Cooper and Butcher
[9] considered an iterative method, Butcher and Chatier[4] presented a one stage
method, Xiao[21] considered a two stage method and Gladwell and Wang[12]
presented analysis of two- and three step methods for second order systems and
Shampine[18] dealt with implicit methods for solving ODE’s. Other examples
of the implementation of implicit Runge-kutta methods are Attili et. al.[2] who
considered second order systems, Ramos et.al.[16] who developed a fourth-order
method of BDF-type for solving stiff initial-value problems and Imoni et.al.[13]
who considered second-order ordinary differential equations possessing oscilla-
tory solutions. Parallel implementation of the implicit Runge-Kutta and use of
predictor corrector can be found in Li and Gan[14] and Voss and Muir [20].

We will consider the efficient implementation of a fourth order two stage im-
plicit Runge-Kutta method to solve second order systems of the form given in
(2). The method is known to be stable. The technique used to solve the resulting
systems will be to factorize the operator involved after the discretization. One
factorization will involve complex arithmetic while two other suggested factoriza-
tions will avoid such complex arithmetic. We will consider the ones that involve
real arithmetic. Such factorization will make the systems involved efficient and
smaller in size. This type of treatment will be considered in Section 2. The nu-
merical details will be done in Section 3 and finally in Section 4, we will present
some numerical examples to show the efficiency of the suggested algorithm.

2 The Implicit Runge-Kutta Method

We will consider the initial value problem of the form (1.2); that is,

Mÿ = f(y); y(0) = y0; ẏ(0) = ẏ0; t > 0. (3)

We may rewrite (3) as a first order system of the form

Y ′ = F (Y); Y (0) = Y0; t > 0 (4)

where Y =
[

y
ẏ

]
; F (Y) =

[
ẏ
M−1f(y)

]
and Y0 =

[
y0

ẏ0

]
.

The implicit fourth order Runge-Kutta method for (4) will be

Yn+1 = Yn +
h

2
[F (Y1) + F (Y2)] (5)

where

Y1 = Yn +
h

4
[F (Y1) + αmF (Y2)]

Y2 = Yn +
h

4
[αpF (Y1) + F (Y2)] (6)

An Efficient Fourth Order Implicit Runge-Kutta Algorithm 171

with αm = 1 − 2
√

3
3 and αp = 1 + 2

√
3

3 , see Ehle and Picel[11], Cooper and
Butcher[9], Serbin[17] and Gladwell and Wang[12]. To implement the method,
one solves (6) for Y1 and Y2 using Newton’s method. Then substitute back into
(5) to obtain a new Yn+1. To do so, the Newton’s iterates will be

J(Y p−1)ΔY p = −F (Y p−1)

or in details
[

I − h
4

∂F
∂y −αmh

4
∂F
∂y

−αph
4

∂F
∂y I − h

4
∂F
∂y

] [
ΔY p

1

ΔY p
2

]
(7)

= −
[
Y p−1

1 − Yn − h
4 F (Y p−1

1) − h
4 αmF (Y p−1

2)
Y p−1

2 − Yn − h
4 αpF (Y p−1

1) − h
4 F (Y p−1

2)

]

If the system in (3) is of order s, then the system in (7) will be of order 4s.
This means this approach is inefficient for large s. Instead let us derive another
approach. Consider (6); that is,

Y1 = Yn +
h

4
[F (Y1) + αmF (Y2)] (8)

Y2 = Yn +
h

4
[αpF (Y1) + F (Y2)] . (9)

From (8), solve for h
4 F (Y2) to obtain

h

4
F (Y2) =

[
Y1 − Yn − h

4
F (Y1)

]
1

αm

or
h

4
F (Y2) =

[
−3αpY1 + 3αpYn +

3h

4
αpF (Y1)

]
. (10)

Substitute (10) into (9) to obtain

Y2 = Yn +
h

4
αpF (Y1) − 3αpY1 + 3αpYn +

3h

4
αpF (Y1)

which when simplified leads to

Y2 = [Yn(1 + 3αp) − 3αpY1 + hαpF (Y1)] . (11)

Substituting (11) in (8), we obtain

Y1 − Yn − h

4
F (Y1) − αm

h

4
F [Yn(1 + 3αp) − 3αpY1 + h.αpF (Y1)] = 0 (12)

a system of order 2s. This means one can solve (12) using Newton’s method for
Y1 then recover Y2 from (11) and update Y from (5). Again (12) can be solved

172 B.S. Attili

using Newton’s method. To carry out the work in the first part, the Jacobian of
(12) is

J = I − h

4
∂F

∂y
− αm

h

4
∂F

∂y

(
−3αp + αp.h

∂F

∂y

)

= I − h

4
∂F

∂y
+ αp.αm

3h

4
∂F

∂y
− αp.αm

h2

4

(
∂F

∂y

)2

with αp.αm = −1
3 and using some approximations. Hence the Jacobian simplifies

to (similar systems were considered by Cooper and Butcher[9])

J = I − h

2
∂F

∂y
+

h2

12

(
∂F

∂y

)2

. (13)

As a result, Newton’s method will be

J(Y p−1
1)ΔY p

1 = −H
(
Y p−1

1

)

where ΔY p
1 = Y p

1 − Y p−1
1 and

H

(
Y

p−1
1

)
= Y

p−1
1 −Yn−h

4
F (Y p−1

1)−αm
h

4
F

[
Yn(1 + 3αp) − 3αpY

p−1
1 + hαpF (Y p−1

1)
]
. (14)

One can easily see that the operator (13) can be factorized as

J =
(

I − rh
∂F

∂y

)(
I − −

rh
∂F

∂y

)
; r =

1
4

+ i

√
3

12

where r is unfortunately complex. This has the drawback of having to use com-
plex arithmetic. To avoid so, one can use a perfect square factorization of the
form

J =
(

I − rh
∂F

∂y

)2

with r =
√

3
6 leading to discrepancy in the linear term or r = 1

4 leading to
discrepancy in the quadratic term. With either of the latter factorizations, (13)
becomes (

I − rh
∂F

∂y

)2

ΔY p
1 = −H

(
Y p−1

1

)
. (15)

This implies that the solution can be obtained in two stages but using the same
matrix; that is, solve

(
I − rh

∂F

∂y

)
Z = −H

(
Y p−1

1

)

(
I − rh

∂F

∂y

)
ΔY p

1 = Z. (16)

One factorization with two back substitutions.

An Efficient Fourth Order Implicit Runge-Kutta Algorithm 173

3 The Algorithm

To reflect back on our original system given by (4), we will carry out the details
of the systems given by (16). We can write

H
(
Y p−1

1

)
=
[

Hp−1
1 + M−1Hp−1

2

Hp−1
3 + M−1Hp−1

4

]
and Y p−1

1 =
[

up−1
1

up−1
2

]
(17)

where

Hp−1
1 = yn − up−1

1 +
h

4
(αm − 1)ẏn +

h

2
up−1

2

Hp−1
2 =

−h2

12
f(up−1

1); Hp−1
3 = ẏn − up−1

2

Hp−1
4 =

h

4
f(up−1

1) +
h

4
αmf((1 + 3αp)yn − 3αpup−1

1 + hαpup−1
2). (18)

Notice also that the matrix involved in the right hand side of (16) is of the form

I − rh
∂F

∂y
=
[

I −rhI

−rhM−1 ∂f
∂y I

]
. (19)

Here ∂f
∂y = J is assumed a constant Jacobian at each step and let z = (z1 z2)T .

Now for elimination purposes, we multiply the first part of (16) from left by

C = M

[
I rhI
0 I

]
. (20)

to obtain

[
M − r2h2J 0

−rhJ M

] [
z1

z2

]
=

[
M
(
Hp−1

1 + rhHp−1
3

)
+ Hp−1

2 + rhHp−1
4

MHp−1
3 + Hp−1

4

]
.

This leads to
(
M − r2h2J

)
z1 = M

(
Hp−1

1 + rhHp−1
3

)
+ Hp−1

2 + rhHp−1
4 . (21)

From the first row of the first part of (16), we will have

z1 − rhz2 = Hp−1
1 + M−1Hp−1

2

and hence
z2 =

(
z1 − Hp−1

1 − M−1Hp−1
2

)/
rh (22)

which means z1 and z2 can be computed. Now for the second part of (16) again
premultiplying by the matrix C given by (20) will lead to

174 B.S. Attili

[
M − r2h2J 0

−rhJ M

] [
up

1 − up−1
1

up
2 − up−1

2

]
=
[

z1

z2

]
.

In a similar way we will have

(
M − r2h2J

) (
up

1 − up−1
1

)
= M (z1 + rhz2)

and as in (22)

(
M − r2h2J

) (
up

1 − up−1
1

)
= M

(
2z1 − Hp−1

1

)
− Hp−1

2 . (23)

We will repeat a similar argument here to compute up
2 −up−1

2 and hence up
2; that

is, from the first row of the second part of (16), we will have

(
up

1 − up−1
1

)
− rh
(
up

2 − up−1
2

)
= z1

leading to

up
2 = up−1

2 +
[(

up
1 − up−1

1

)
− z1

]/
rh. (24)

Having up
1 and up

2 we can compute Y2 from (11) and Y1 from (12). Instead if we
substitute Y1 and Y2 in (5) directly and simplify the result, we obtain

Myn+1 =
h2

2
αpf(u1) + M

[
yn +

h

2
ẏn(1 + 3αp) +

h

2
u2(1 − 3αp)

]

Mẏn+1 = Mẏn +
h

2
f(u1) +

h

2
f (yn(1 + 3αp) − 3αpu1 + αphu2) . (25)

This will lead to the following algorithm:

Algorithm: Assume yn, ẏn and J = ∂f
∂y have been computed. Then to compute

yn+1 and ẏn+1

1. Set p = 1 and predict u0
1 and u0

2 then carry out Newton’s iteration,

2. Evaluate f(up−1
1) and f

(
yn(1 + 3αp) − 3αpup−1

1 + αphup−1
2

)
.

3. Form Hp−1
1 , Hp−1

2 , Hp−1
3 and Hp−1

4 using (18).
4. Solve the systems (21), (22), (23) and (24) for z1, z2, up

1 and up
2.

5. Set p = p + 1 and repeat until convergence

Then calculate yn+1 and ẏn+1 from (25).
Note that it is advisable to deal with hz2 and hw2 in (22) and in (24) re-

spectively in order to avoid dividing by what possibly might be very small step
size h.

An Efficient Fourth Order Implicit Runge-Kutta Algorithm 175

4 Numerical Experimentation

For numerical examples we consider

Example 1: Consider

y′′ + 64y = 0

y(0) =
1
4
, y′(0) = −1

2
,

Solving using the Algorithm with h = 0.01, the results obtained are plotted
against the exact solution in Figure 1. The exact solution for this system is
y(t) =

√
17

16 sin(8t+ θ); θ = π − arctan(4). The errors at x = 1 for step sizes h =
0.01 and h = 0.005 were respectively 0.1084×10−6 and 0.6776×10−8. This means
the Algorithm is producing an order of 3.99979; that is, O(h4) approximations
to the solution of the system as expected by the algorithm.

Example 2: Consider the nonlinear initial value problem

y′′ + y3 = 0
y(0) = 1, y′(0) = 1.

We solved the problem using NDSolve Mathematica routine and the Algorithm.
The solutions obtained and the errors at selected points are given in Table 4.1
for h = 0.01.

Fig. 1. The approximate solution against the exact

176 B.S. Attili

x Mathematica Sol. Algorithm Error
0.0 1.0 1.0 0.0
0.1 1.0944893860584493 1.09448938558520 4.7324-10
0.2 1.1758644626560342 1.17586446434978 1.6937-9
0.3 1.2410056491546735 1.24100565087605 1.7213-9
0.4 1.2870881345737024 1.28708814223123 7.6575-9
0.5 1.3119284869961894 1.31192851904109 3.2044-8
0.6 1.314283942920852 1.31428399609513 5.3174-8
0.7 1.2940342408482368 1.29403429001151 4.9163-8
0.8 1.2521995980449039 1.25219965290282 5.4857-8
0.9 1.1907903129619792 1.19079031982329 6.8613-9
1.0 1.1125262352847067 1.11252624109804 5.813-9
Table 4.1: Results for Example 2 at selected points.

Fig. 2. The solution against exact with 	 = 100

Example 3

y′′ = −�2y

y(0) = 1, y′(0) = 1 + �,

which has y = cos�x+sin�x as exact solution. With � = 100, the approximate
solutions against the exact ones are given in Figure 2. As seen from Figure 2

An Efficient Fourth Order Implicit Runge-Kutta Algorithm 177

and since � = 100, the solution is oscillating and yet the results obtained using
the algorithm are accurate.

In conclusion and from the examples above, it is clear that the proposed
algorithm produced a fourth order accuracy even when solutions are highly os-
cillating. The amount of work done is significantly less since the systems solved
are one fourth the size of those using normal implicit Runge-Kutta method.

5 Conclusions

We have presented a fourth order two stage implicit Runge-Kutta method for
solving second order systems. The method used is known to be stable. To imple-
ment the method we considered the factorization of the discretized operator that
involves real arithmetic. This resulted in systems that are one fourth the size of
the original systems. Leading to significant saving in the amount of work done
without sacrificing the fourth order accuracy as the numerical examples show.
Some future work will be to explore the possibility of using such an approach in
solving differential algebraic systems.

References

1. Attili, B., Elgindi, M., Elgebeily, M.: Initial Value Methods for the Eigenelements
of Singular Two-Point Boundary Value Problems, AJSE, 22(2C), pp. 67–77 (1997)

2. Attili, B., Furati, K., Syam, M.: An Efficient Implicit Runge-Kutta Method for
Second Order Systems. Applied Math. Comput. 178, 229–238 (2006)

3. Burder, J.: Linearly Implicit Runge-Kutta Methods Based on Implicit Runge-Kutta
Methods. Appl. Numer. Math. 13, 33–40 (1993)

4. Butcher, J., Chartier, P.: The Effective Order of Singly-Implicit Runge-Kutta
Methods. Numer. Algorithms 20, 269–284 (1999)

5. Carpenter, M.H., Kennedy, C.A., Bij, H., Viken, S.A., Vatsa, V.N.: Fourth-order
Runge-Kutta schemes for fluid mechanics applications. J. Sci. Comput. 25, 157–194
(2005)

6. Cash, J.: High Order P-stable Formulae for Periodic Initial Value Problems. Numer.
Math. 37, 355–370 (1981)

7. Cash, J.: Efficient P-stable Methods for Periodic Initial Value Problems. BIT 24,
252–284 (1984)

8. Chawla, M.: Unconditionally Stable Noumerov-Type Methods for Second Order
Differential Equations. BIT 23, 541–552 (1983)

9. Cooper, J., Butcher, J.: An Iterative Scheme for Implicit Runge-Kutta Methods.
IMA J. Numer. Anal. 3, 127–140 (1983)

10. de-Swart, J., Soderlind, G.: On the Construction of Error Estimators for Implicit
Runge-Kutta Methods. J. Comput. Appl. Math. 86, 347–358 (1997)

11. Ehle, B., Picel, Z.: Two Parameter Arbitrary Order Exponential Approximations
for Stiff Equations. Math. Comp. 29, 501–511 (1975)

12. Galdwell, I., Wang, J.: Iterations and Predictors for Second Order Systems. In:
Ames, W.F. (ed.) Proceedings, 14th IMACS World Congress on Comput. and
Appl. Math., Georgia, vol. 3, pp. 1267–1270 (1994)

178 B.S. Attili

13. Imoni, S.O., Otunta, F.O., Ramamohan, T.R.: Embedded Implicit Runge-Kutta
Nystrom Method for Solving Second-Order Differential Equations. Int. J. Comput.
Math. 83, 777–784 (2006)

14. Li, S.F., Gan, S.: A class of Parallel Multistep Runge-Kutta Predictor-Corrector
Algorithms. J. Numer. Methods Comput. Appl. 17, 1–11 (1995)

15. Olsson, H., Soderlind, G.: Stage Value Predictors and Efficient Newton Iterations
in Implicit Runge-Kutta Methods. SIAM J. Sci. Comput. 20, 185–202 (1999)

16. Ramos, H., Vigo-Aguiar, J.: A fourth-Order Runge-Kutta Method Based on BDF-
Type Chebyshev Approximations. J. Comput. Appl. Math. 204, 124–136 (2007)

17. Serbin, M.: On Factoring A class of Complex Symmetric Matrices Without Pivot-
ing. Math. Comput. 35, 1231–1234 (1980b)

18. Shampine, L.: Implementation of Implicit Formulas for the Solution of ODE’s.
SIAM J. Sci. Stat. Comput. 1, 103–118 (1980)

19. Sharp, P., Fine, J., Burrage, K.: Two-Stage and Three Stage Diagonally Implicit
Runge-Kutta Nystrom Methods of Order Three and Four. IMA J. Numer. Anal. 10,
489–504 (1990)

20. Voss, D., Muir, P.: Mono-Implicit Runge-Kutta Schemes for the Parallel Solutions
of Initial Value ODE’s. J. Comput. Appl. Math. 102, 235–252 (1999)

21. Xiao, A.: Order Results for Algebraically Stable Mono-Implicit Runge-Kutta Meth-
ods. J. Comput. Appl. Math. 17, 639–644 (1999)

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 179–187, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Laplace Equation Inside a Cylinder: Computational
Analysis and Asymptotic Behavior of the Solution

Suvra Sarkar and Sougata Patra

Department of Electronics and Communication Engineering
Haldia Institute of Technology

Indian Centre for Advancement in Research and Education
Haldia, West Bengal

ssarkar.ece@gmail.com, spatra.ece@gmail.com

Abstract. The Laplacian in the cylindrical coordinate space has been considered
to approximate the solution of a conservative field within a restricted domain.

2 2 2

2 2 2 2

1 1
0

z

ψ δψ ψ ψ
ρ ρ δρ ρ φ

∂ ∂ ∂+ + + =
∂ ∂ ∂

Solutions of the Laplacian are represented by expansion in series of the appro-
priate orthonormal functions. By using asymptotic relations of Bessel Series
and Fourier Bessel series, we establish some criteria for the solution to properly
reflect the nature of the conservative field.

Keywords: Bessel functions, Fourier-Bessel Series, Kronecker Delta, Laplace
Equation.

1 Introduction

Many problems in electrostatics involve boundary surfaces on which either the poten-
tial or the surface charge density is specified. A somewhat idealized solution to the
practical situations has been presented here. Consequently a number of approaches to
electrostatic boundary value problems have been developed. The differential equation
involving the conservative field has been approached through expansions in orthogo-
nal functions. The solution of the Laplace equation so generated was decomposed into

a product of factors for the three variables , and zρ ϕ . The use of Bessel functions in
theoretical physics literature is overwhelming; these form an orthogonal, complete set
of functions, which are solutions to the radial component of the Laplacian. In the
present problem we have tried to predict the behavior of the conservative field and
predict its nature using graphical analysis through computational methods. As a first
step, a cylindrical coordinate space was used for the given situation and the required
Laplace's equation was formed. The partial differential equations so obtained were
simplified using the separation of variables, and three independent equations for

,ρ ϕ and z were obtained.

180 S. Sarkar and S. Patra

Fig. 1. A Cylindrical shaped domain with the upper edge at a specified potential

The generated ordinary differential equations were then solved using mathematical
techniques. Bessel equation of the first and second kind was exhaustively used for
generating the solution of the ordinary differential equations so obtained. The solu-
tions were analyzed by framing the required Dirichlet and Neumann boundary condi-
tions. The simplified equation so generated gave us the nature of the conservative
field function within the specified domain. The nature of the equipotential lines of the
electric field was probed further through numerous simulations.

2 Solution to the Boundary Value Problem

For the solution inside the cylinder with prescribed value of potential on its surface,
we consider a conducting cylinder of radius a and height z. The partial differential
equations of mathematical physics are often conveniently solved by the method of
separation of variables.We now consider the solution by separation of variables of the
three-dimensional Laplace equation in cylindrical polar co-ordinates.Referring to
Fig. 1, considering the general cylindrical coordinate system, ρ, Φ and z, as shown in
the figure, we can write the scalar Laplacian for the potential (, ,)zψ ρ φ as

2 2 2

2 2 2 2

1 1
0

z

ψ δ ψ ψ ψ
ρ ρ δρ ρ φ

∂ ∂ ∂+ + + =
∂ ∂ ∂

 (1)

Now using separation of variables, we can write:

 (, ,) () () ()z R Q Z zψ ρ φ ρ φ= (2)

Substituting equation (2) in the Laplacian for cylindrical co-ordinate space

 Laplace Equation Inside a Cylinder 181

2 2 2

2 2 2 2

1 1 1 1
0

d R dR d Q d Z

R d R d Q d Z dzρ ρ ρ ρ φ
+ + + = (3)

Using standard computation approaches, we may write the solution for each inde-
pendent variable as

() q zZ z e ±= , () i vQ e φφ ±= , () () ()v vR CJ q DJ qρ ρ ρ−= + (4)

Here we introduce
2

2
2

1 d Q
v

Q dφ
− =

In the Bessel solution shown above, vJ and vJ− are given by:

()
2

0

(1)
()

2 ! 1 2

jj

v
j

x x
J x

j j

ν

ν

∞

=

−⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠
∑

()
2

0

(1)
()

2 ! 1 2

jj

v
j

x x
J x

j j

ν

ν

− ∞

−
=

−⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟Γ − +⎝ ⎠ ⎝ ⎠
∑

These solutions are called Bessel Functions of the First kind and the series converges
for all finite values of x where ν may or may not be an integer. If ν is an integer, it
is required to introduce another linearly independent solution, the Neuman function,
given by

[]1
() cos() () ()

sinv v vx v J x J x
v

π
π −ϒ = −

For the given situation, x has been replaced by qρ in the statements that follow.

In order that the potential be single-valued inside the cylinder, we define the
Dirichlet boundary condition for this present problem as

(i) For ρ =0, the potential must be finite

(ii) For ρ =a, the potential must tend to zero

(iii) At z=L, (, ,)zψ ρ φ = (,)V ρ Φ

Since the potential is finite and real valued at ρ =0, we set D=0, so that ()R ρ is

well-defined as, 0()vJ q ρρ− = =∞. As long as this condition is valid, we may redefine

the solution for ()R ρ as () ()vR C J qρ ρ= . For x>>1, the asymptotic form

of Bessel functions can be written as,

2
() co s

2 4m

m
J x x

x

π π
π

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

Without any loss of any generality we may write

2
() c o s

2 4m

m
J q a q a

q a

π π
π

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

The requirement that the potential vanish at ρ =a, means that ,m nq (see below) can

take on only the specified values as () 0mJ qa → . For higher roots, the asymptotic

formula is

182 S. Sarkar and S. Patra

1

2 4

m
q n

a

ππ⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 Here 1,2,3....................n= ∞, since, for n=0,

() 0mJ qa ≠ and this does not satisfy the boundary condition. Combining all the

above conditions and replacing the solutions of (), ()R Qρ φ and ()Z z in (2), and (1)

we have

, , , ,
0 1

(, ,) () sinh()(sin cos)m m n m n m n m n
m n

z J q q z A m B mψ ρ φ ρ φ φ
∞ ∞

= =

= +∑∑ (5)

Now, there is one final boundary condition that must be realized. We substitute at z=L
in eq (5).Substituting z=L in, we obtain:

(), , , ,
0 1

(, ,) (,) () sinh() sin cosm m n m n m n m n
m n

L V J q q L A m B mψ ρ φ ρ φ ρ φ φ
∞ ∞

= =
= = +∑ ∑ (6)

Taking the Fourier Sine Transform and simplifying in the above equation, we obtain
2 2 2

, , , ,

0 0 0

(,)sin() sinh() () sin()sin() cos()sin()m n m m n m n m n
m n

V l d q L J q A m l d B m l d
π π π

ρ φ φ φ ρ φ φ φ φ φ φ
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

∑∑∫ ∫ ∫ (7)

Simplifying the above equation and performing the integrations,
2

, , , ,

0

(,) sin() sinh() ()m n m m n m n m l
m n

V l d q L J q A
π

ρ φ φ φ ρ πδ= ∑∑∫

where ,m lδ is the Kronecker Delta.Since ,m lπ δ blows up for m l≠ , we may

write
2

, , ,

0

(,) sin() sinh() ()l n l l n l n
n

V l d q L J q A
π

ρ φ φ φ π ρ= ∑∫ (8)

because , 1m lδ = for m l= . Equation (8) is a Fourier series in ϕ and a Fourier-

Bessel series in ρ . Integrating within the limits 0 aρ< < , we obtain

2
,

, ,2 2
1 , 0 0

c o s ()2
(,) s in () ()

()

a
m n

m n m m n
m m n

e c h q L
A V l J q d d

a J q a

π

ρ φ φ ρ ρ ρ φ
π +

= ∫ ∫

And similarly,
2

,
, ,2 2

1 , 0 0

c o s ()2
(,) c o s () ()

()

a
m n

m n m m n
m m n

e c h q L
B V l J q d d

a J q a

π

ρ φ φ ρ ρ ρ φ
π +

= ∫ ∫ (9)

Now that we have computed the constants, we can write the final solution as,

2
,

, , ,2 2
0 1 0 01 ,

,

2 2

1 ,

cos ()2
(, ,) ()sinh()((,)sin() () sin

()

cos ()2

(

a
m n

m m n m n m m n
m n m m n

m n

m m

ech q L
z J q q z V l J q d d m

a J q a

ech q L

a J q

π

ψ ρ φ ρ ρ φ φ ρ ρ ρ φ φ
π

π

∞ ∞

= = +

+

=

+

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑∑ ∫ ∫
2

,

0 0

(,)cos() () cos)
)

a

m m n

n

V l J q d d m
a

π

ρ φ φ ρ ρ ρ φ φ
⎡ ⎤
⎢ ⎥
⎣ ⎦

∫ ∫

 Laplace Equation Inside a Cylinder 183

The particular form of expansion is governed by the requirement that the potential
vanish at z=0 for arbitrary ρ and ρ =a for arbitrary z. For different boundary condi-

tions the expansion would take a different form.

3 Simulation and Analysis Results

For the situation depicted in the problem statement the behavior of the conservative
field function was simulated for finite values of applied potential on the top surface of
the cylinder. The simulations were henceforth done in Matlab through the Partial
Differential Equation toolbox. The Laplacian was extensively simulated in the cylin-
drical domain and the nature of the equipotential lines was analyzed. A constant dc 10
volt was applied to a 100 mm long cylinder, and the situation was simulated. The
solution to the elliptic partial differential equation generated shows a peculiar ten-
dency of the potential. For finite values of applied potential on one of the edges, the
potential starts increasing exponentially for increasing height for constant radial dis-
tances. As the distance from the central axis increases, the potential decreases as we
approach the boundary, which is because of the boundary condition imposed by us. A
similar behavior can be seen along the negative axes on the cylindrical domain. That
is, along the left half of the cylinder a similar thing is seen to happen. In simple terms
we may say that the behavior of the potential on the two halves is somewhat like
mirror images. The contours are prominent for the upper half of the cylinder and we
see a remarkable distinction between the high and low potential regions as we ap-
proach the upper boundary of the cylindrical domain.

Fig. 2. Simulation of the nature of equipotential lines of electric field inside the Cylinder

184 S. Sarkar and S. Patra

We see that there isn't much happening in the lower part of the cylinder. The region
below the lowest contour shown is all below 100 volts. The potential is poorly be-
haved in the corners where the equipotentials meet. We have to take the blame for
that, because we imposed a boundary condition which is discontinuous at the corner.
In order to test the behavior of the potential in practical situations we numerically
solved the final equation obtained using an algorithm developed by us. The algorithm
was implemented in a standard programming platform and the values of the potential
were generated for various combinations of the radial distance and the height. We
examined the behavior by obtaining plots of the potential as a function of the height
for certain values of the radial distance and also for the behavior as a function of the
increasing radial distance for constant values of the separation from the upper edge.
The behavior is perfectly in agreement with the simulation results, as shown above.
The results have been analyzed in brief in the sections that follow. Stress has been
laid on the behavior of the solutions due to the inadequacy of the Fourier-Bessel se-
ries to give accurate, converging results. The plots shown below depict the nature of
the potential as a function of the radial distance from the central axis, for finite values
of the distance from the top surface. The nature of the plot is similar in nature to the
one obtained by us in the Matlab Simulation results. The lower regimes show almost
negligible penetration of the electric potential. Also noteworthy is the nature of the
curves, where for each value of the longitudinal separation, the potential shows a
gradual decrease for increasing values of the radial distance. Here we may draw a
similarity between the plot obtained by us and the one obtained in the Simulation
results. If one observes closely, it will be noticed that at the centre region of the cylin-
drical volume, the strength of the electric potential is very high and well behaved at
the top surfaces, but as one goes toward the boundary, the strength of the electric
potential decreases steadily until finally tending to zero at the side walls.

Fig. 3. Plot of the Potential vs the Radial Distance ρ for finite values of the distance from the

upper edge of the Cylinder

 Laplace Equation Inside a Cylinder 185

The nature can be well understood from the regime where the field penetration is
of average levels. One can easily notice that the potential starts falling as one moves
away from the central axis, until finally becoming zero, as per our boundary condi-
tion. We also examined the nature of the potential for increasing height for constant
values of separation from the central axis.

Fig. 4. Exponentially increasing values of the potential are plotted here as a function of the
radial distance and the height. For the lower contours the potential is poorly behaved and starts
increasing for increasing values of the height.

From the nature of the plots shown below, for the behaviour of the potential for in-
creasing distance from the grounded base, for constant values of ρ , we may conclude

that the potential is exponentially divergent with increasing values of z. From the 3
dimension overview shown above we see that our results are indeed similar to the
simulation results, as can be seen above. The potential steadily increases for increas-
ing height and attains its maximum value of that of the applied potential. We also
confirm our findings in the simulation result by the nature of the plots obtained by us.

The results lead us to conclude that the situation is quite unlike the behaviour in ac-
tual practical observations. From the analysis point of view we may also note that in
formulating the behavior, the solution takes only certain values for which the problem
is consistent. For every other value the problem gives unrealistic results. Also, we
must note that at certain instances the solution gives values of the potential which
exceeds the maximum value of the applied voltage, which though are within accept-
able limits and do not result in significant divergence from the true nature. This is due
to the fact that while generating the coordinates for graphical analysis, certain as-
sumptions have been taken, and the terms in the series solutions have been assumed
only unto a certain order. Moreover, the integrations over the cylindrical boundary

186 S. Sarkar and S. Patra

Fig. 5. Plot of the Potential as a function of the Height for Radial Distance, ρ =2, 3, 5 and

6mm. We notice he decrease in potential for increasing radial distance, from the nature of the
plots.

were done numerically and certain assumptions have also been made there. That is for
the series solutions involving m and n; we only took these values unto a certain limit
for certain restrictions on the programming platform. But the nature of the solution
may well be extended to realizable situations and other complex and mixed boundary
value problems as well. But the divergent nature of the potential inside the cylinder
needs to be probed further, and possibly ample scope remains for others to develop
reasons for the diverging nature.

4 Conclusion

For elliptic partial differential equations involved in the Laplacian in strict boundary
value problems, the series solutions were obtained and analyzed numerically. The
consistency of the solutions was examined for a cylindrical domain and the behavior
of the potential function was simulated. Certain inconsistencies that may require a
detailed study is the diverging nature of the potential as we approach the boundary.
Also associated with the numerical solution are certain assumptions that one must

 Laplace Equation Inside a Cylinder 187

probe into while solving the problem numerically, including the series expansions of
the Fourier and Fourier-Bessel functions. The non convergent nature of the potential
is very much intriguing and poses several questions that must be looked into in more
detail. Here, we attribute this non convergent nature to the inherent drawbacks of the
methods used to generate the solution to the problem. That is, the approximations that
came into consideration while taking the series expansions and those in the numerical
solutions to the integrals. A more detailed study on these aspects may lead to more
intriguing behavior with possible reasons and inferences.

Acknowledgements

The authors would like to thank Dr.A.K.Ganguly (Department of Engineering Sci-
ence, Haldia Institute of Technology), for the help provided by him in computation
methods and theoretical discussions. The authors are also grateful to Dr.K.Ghosh
(Department of Engineering Science, Haldia Institute of Technology) and Prof.M.S
Saroa (Department of Engineering Science, Haldia Institute of Technology) for fruit-
ful consultations. The authors would like to thank all those who have constantly re-
viewed this paper and made the necessary changes.

References

[1] Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1975)
[2] Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press,

Cambridge (1944)
[3] Lighthill, M.J.: Fourier analysis and Generalized Functions. Cambridge University Press,

Cambridge (1975)
[4] Partial Differential Equation Toolbox Users Guide, The MathWorks,

http://www.mathworks.com/access/helpdesk/help/toolbox/
pde/pde.shtml

A Method and Its Implementation for

Constructing Bäcklund Transformations to
Nonlinear Evolution Equations

Zhibin Li1,2, Yinping Liu2, and Haifeng Qian2

1 Institute of Theoretical Computing,
2 Department of Computer Science

East China Normal University, Shanghai 200062, China

Abstract. An algorithmic method to construct a kind of auto Bäcklund
transformations (BTs) is proposed. A Maple package AutoBT, which can
entirely automatically generate auto BT is presented. AutoBT has been
effectively applied to many nonlinear evolution equations with physical
significance. Not only are previously known BT recovered but also in
some cases new and more general form of BT are obtained.

1 Introduction

Nonlinear evolution equations are important mathematical models to describe
physical phenomena. They are also an important field in the contemporary study
of nonlinear physics, especially in soliton theory. The research on the explicit
solution and integrability is helpful in clarifying the movement of matter under
nonlinear interactivity and plays an important role in scientifically explaining
the corresponding physical phenomena.

The Bäcklund transformation (BT), originated in the study of surfaces of con-
stant negative curvature, is such a system of equations, relating the solution of
a given equation either to another solution of the same equation or to a solution
of other equation. The former is called auto BT. Generally, the Bäcklund trans-
formations of nonlinear partial differential equations(PDEs) plays an important
role in soliton theory. They are used to construct an infinite number of conserved
quantities and to provide exact solutions for nonlinear PDEs. In particular, the
nonlinear iterative principle from BT, converts the problem of solving nonlinear
PDEs to that of purely algebraic calculations.

It is difficult to find the Bäcklund transformations for a given nonlinear PDE.
Various methods have been developed for different classes of equations, such
as, the Painlevé analysis method[1-3], the homogeneous balance method[4,5],
the Hirota method[6-8] and variational method[9-11]. Correspondingly, Bäcklund
transformations can be shown in different forms. To our best knowledge, many
nonlinear evolution equations have a form of

E(u, ut, ux, uxx, · · ·) = 0 (1)

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 188–198, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Method and Its Implementation for Constructing BTs 189

that admit auto BTs with a form

(u + av)t = P (u, v, ux, vx, · · · , unx, vnx), (cu + v)x = Q(u + av), (2)

where a and c are constants, P and Q are functions in their variables, respec-
tively. If u is a solution of equation (1) and v satisfies the transformation (2),
then v is also a solution of equation (1).

For example, by transformation w = ux, the KdV equation

wt + 6 w wx + wxxx = 0 (3)

can be rewritten as
uxt +

(
3(ux)2 + uxxx

)
x

= 0. (4)

An auto BT of (4) has been found as

(u − v)t = (v − u)xxx + 3((vx)2 − (ux)2), (u + v)x = −1
2
(u − v)2 + β, (5)

where β is a constant. If u is a solution of the KdV equation (4), the BT (5)
shows that a second solution v of KdV equation (4) may be constructed by
integration of the pair of first-order equations.

Another example, known one hundred years ago, is the sine-Gordon equation

uxt = sin u, (6)

which admits an auto BT

(u + v)t =
2
d

sin
v − u

2
, (v − u)x = 2 d sin

u + v

2
, (7)

where d is an arbitrary parameter. From Bäcklund transformation (7), a relation
may be derived:

U = u + 4 tan−1

[
d2 − d1

d2 − d1
tan
(

u2 − u1

4

)]
. (8)

The relation (8) represents a nonlinear iterative principle which acts on the
solution set {u, u1, u2} to produce a new solution U .

Other nonlinear PDEs, such as Liouville equation, mKdV equation, Gardner
equation, generalized KdV and the fifth order equations of the KdV hierarchies,
and so on, admit auto BT in the form (2). In this paper, a method to construct
BT in the form (2) is proposed. A Maple package for delivering the auto BT
entirely automatically is presented.

The paper is organized as follows. In Section 2, the algorithm is introduced.
The implementation of the algorithm is described in Section 3. In the last section,
several examples are given to demonstrate the effectiveness of the package.

190 Z. Li, Y. Liu, and H. Qian

2 An Algorithm for Bäcklund Transformation

It is well known that most nonlinear evolution equations can be converted into
the form

uxt = H(u, ux, uxx, · · · , unx), (9)

where unx means the nth-derivative of u with respect to x, H is a function of
u and its derivatives. For example, both the KdV equation (4) and the sine-
Gordon equation (6) are in the form (9). Similarly, by a transformation the
Burgers equation

wt + wwx − pwxx = 0 (10)

can be converted into the form (9)

uxt = (puxx − 1
2
(ux)2)x. (11)

For equation (9), suppose that it admits auto BT in the form (2). We consider
two special cases.

2.1 The First Case: Differential Form

We assume that H in (9) can be written as

H = F (ux, uxx, · · · , u(n−1)x)x, (12)

where F is a polynomial in its variables. In order to construct auto BT in the
form (2), we first duplicate (9) with another variable v

uxt = F (ux, uxx, · · · , u(n−1)x)x, (13)

vxt = F (vx, vxx, · · · , v(n−1)x)x. (14)

Then we construct the auto BT by following steps:

Step 1: Multiply both sides of (14) by a, add the obtained equation to (13),
we have

(u + a v)xt = (F (ux, uxx, · · · , u(n−1)x) + a F (vx, vxx, · · · , v(n−1)x))x, (15)

integrate (15) with respect to x, which gives the t-part of the autoBT:

(u + a v)t = F (ux, uxx, · · · , u(n−1)x) + a F (vx, vxx, · · · , v(n−1)x). (16)

Step 2: To get the x-part of the autoBT, we first multiply both sides of (13)
by c and add it to (14), we have

(c u + v)xt = (c F (ux, uxx, · · · , u(n−1)x) + F (vx, vxx, · · · , v(n−1)x))x. (17)

Then differentiate both sides of the second equation in (2) with respect to t, we
have

(c u + v)xt = (u + a v)t Q′(u + a v). (18)

A Method and Its Implementation for Constructing BTs 191

Substituting (16) into (18), we obtain

(c u + v)xt = [F (ux, uxx, · · · , u(n−1)x) + a F (vx, vxx, · · · , v(n−1)x)] Q′(u + a v).
(19)

Step 3: The main task in this step is to compute Q(u + a v) by combining
(17) with (19). For convenience, a transformation is introduced as follows

U = u + a v, V = c u + v, (ac
= 1), (20)

in this way, we have

u =
a V − U

a c − 1
, v =

c U − V

a c − 1
. (21)

By using (21), we can reduce (19) as

Vxt = G1(Ux, Vx, · · · , U(n−1)x, V(n−1)x)Q′(U), (22)

and (17) can be expressed as

Vxt = G2(Ux, Vx, · · · , Unx, Vnx). (23)

Eliminating Vxt in (22) and (23) leads to

G1(Ux, Vx, · · · , U(n−1)x, V(n−1)x)Q′(U) − G2(Ux, Vx, · · · , Unx, Vnx) = 0. (24)

From the assumption (2), we know that

Vx = Q, Vxx = Q′Ux, V3x = Q′′(Ux)2 + Q′Uxx, · · · . (25)

Substituting (25) into (24), and combining the same power with respect to U
and its derivatives, we get

∑

i0,i1,···,in

Ti0,i1,···,in(Q, Q′, · · ·)U i0(Ux)i1 · · · (Unx)in = 0. (26)

Let the coefficients of the same powers of U and its derivatives be zero. We
obtain a differential system for Q as well as a, c and parameters appeared in the
original equation as follows

Ti0,i1,···,in(Q, Q′, · · · , Q(n)) = 0, (27)

If system (27) possesses a solution Q(U) then the Bäcklund relation with the
form (2) can be established. If it is inconsistent then we conclude only, that the
possible Bäcklund transformations of (9) are not in the form of (2).

We illustrate the algorithm by using it to establish the auto BT of KdV
equation (4). From Step 1, the t-part of an auto BT relation is established as

(u + a v)t = −(a v + u)xxx − 3(a (vx)2 + (ux)2), (28)

in which a will be determined later.

192 Z. Li, Y. Liu, and H. Qian

From Step 2 and Step 3, we obtain a system for Q(U)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q(U) (6 c + 6 a c) = 0,
6 c + 6 c2 − 3Q′′(U) (2 a c − c2 a2 − 1) = 0,
Q′′′(U) (2 a c + c2 a2 + 1) = 0,
Q′(U)Q(U)2 (3 a2 + 3 a) = 0,
Q′(U)Q(U) (6 + 6 c a2 + 6 a c + 6 a) = 0,
Q′(U) (3 + 3 a c2 + 6 c + 6 a c) = 0.

(29)

Solving the system (29), it follows

Q(U) = −1
2
U2 + c1U + c2, a = −1, c = 1, (30)

where c1, c2 are integral constants. Therefore, the x-part of auto BT is
established.

Thus, an auto BT which is more general than (5) is found

(u−v)t = (v−u)xxx+3((vx)2−(ux)2), (u+v)x = −1
2
(u−v)2+c1(u−v)+c2. (31)

The algorithm in the first case stops here.

2.2 The Second Case: Differential-Free Form

Suppose that H in (9) is just a function of u, i.e. H = F (u). In this case, we
suggest that the t-part of Bäcklund transformation (2) is in simple form

(u + av)t = P (cu + v), (32)

and we proceed as follows:

Step 1: Similar to with the case 1, we have

Ut = P (V), Vx = Q(U) (33)

from (21) and transformation (2). Differentiating both sides of the first equation
in (33) with respect to x and we have

Uxt = P ′(V)Vx, (34)

similarly, from the second equation in (33) we obtain

Vxt = Q′(U)Ut. (35)

Substituting (33) into (34) and (35) leads to

Uxt = P ′(V)Q(U), Vxt = Q′(U)P (V). (36)

Step 2: By combining the original equation with (36), we get a coupled first-
order differential system

P ′(V)Q(U) = F (u) + aF (v), Q′(U)P (V) = cF (u) + F (v). (37)

A Method and Its Implementation for Constructing BTs 193

To keep the consistency of the coupled system, we have
∫

[F (u) + aF (v)]dV =
∫

[cF (u) + F (v)]dU, (38)

from which, the relation for a, c is determined, for example, a = − 1
c . If c = 1,

then a = −1.

Step 3: In this way the coupled system (37) is simplified as

P (V)Q(U) =
∫

[F (u) + aF (v)]dV, (39)

If one can find functions P (V) and Q(U) satisfying the final function equation
(39), then an auto BT in the form (33) can be established. Otherwise, the con-
sidered equation may have no auto BTs in form (33). Since solving the coupled
equation (39) is very difficult, some times we are powerless in facing it.

We illustrate this algorithm by considering the sine-Gordon equation (6).
From Step 1 and Step 2, we obtain the coupled differential system

P ′(V)Q(U) = sin(u) + a sin(v), Q′(U)P (V) = c sin(u) + sin(v). (40)

The compatibility condition of system (40) implies

c [a2 cos(v) − cos(u)] = a [c2 cos(u) − cos(v)]. (41)

From the equation (41) for variable a, c, we have a = − 1
c . Taking c = 1, then

a = −1, and we obtain the final function equation

P (V)Q(U) = −2 [cos(
U + V

2
) − cos(

U − V

2
)]. (42)

Fortunately, we can solve equation (42) and obtain P and Q. Return to the
original variables, the auto BT relation (7) is established.

3 The Maple Package AutoBT

The method described in Section 2, while relatively simple in principle, can be
very tedious in practice by hand. We have developed a package AutoBT written
in Maple 10 that fully automates the method and delivers possible BT relations
as output. Further, possible parameters constraints can be discovered using the
package.

As an example of the use of AutoBT, we consider the Gardner equation[12]

wt − 6wwx + wxxx − 12qw2wx = 0, (43)

194 Z. Li, Y. Liu, and H. Qian

where q is a parameter. To find the auto BT of (43) one proceeds as follows:

>eq:=diff(w(x,t),t)-6*w(x,t)*diff(w(x,t),x)+diff(w(x,t),x$3)-12*q*
w(x,t)^2*diff(w(x,t),x);
>AutoBT(eq);

AutoBT returns the result immediately as follows:
The input EQ is:

∂

∂t
w − 6 w

∂

∂x
w +

∂3

∂x3
w − 12q w2 ∂

∂x
w

The input EQ in u reads:

∂

∂t
(

∂

∂x
u) +

∂

∂x
[−4 q (

∂

∂x
u)3 − 3 (

∂

∂x
u)2 +

∂3

∂x3
u]

where
w =

∂

∂x
u

Two groups of relations between the functions u and v can be found

∂
∂t (u − v) = 3 [(∂

∂xu)2 − (∂
∂xv)2] + ∂3

∂x3 (u − v),

∂
∂x (u + v) = 1

2 (u − v)2 + c1(u − v) + c2

with the parameters constraints: q = 0,

∂
∂t (u − v) = 4 q [(∂

∂xu)3 − (∂
∂xv)3] + 3 [(∂

∂xu)2 − (∂
∂xv)2] + ∂3

∂x3 (u − v),

∂
∂x (u + v) = c1 e

√
2 q(u−v) + c2 e−

√
2 q(u−v) − 1

2 q

with the parameters constraints: q
= 0.
From this example, we can see that once the given equation is input, AutoBT

will generate automatically the possible auto BT relations as well as possible pa-
rameters constraints. It is to be stressed that when q = 0, the Gardner equation
(43) is reduced to KdV equation. Therefore, the first one above is no other than
the auto BT of KdV equation.

The Maple package AutoBT is comprised of the main function AutoBT()
and six other functions new-int(), transform-eq(), built-tBT(), get-eqsQ(),
solve-eqsQ(), final-BT(). We outline each one as follows.

new-int(): As integral function int in Maple is very weak for figuring out re-
sults. In most cases, it is merely expressed by integral sign. So we recoded
a function new-int, based on the basic rules of computing integral. This
function greatly improve the computing capability of integral.

transform-eq(): Suppose the input equation is in function w, we first convert
it in u by a transformation w = ux or w = u according to whether there
exists ut or uxt in input equation. Then we further introduce transformation
u+a v = U, c u+v = V . Thus the obtained equations in u, v can be converted
into U, V , and denote the equations in U, V as eqsUV.

A Method and Its Implementation for Constructing BTs 195

built-tBT(): Assume the required auto BT as (2). If H = Fx in (9), the func-
tion built-tBT builds the t-part of BT relation in U, V , and denote it as
BTtUV.

get-eqsQ(): In this procedure, we first convert (2) into U, V , the obtained
results are denoted by BT UV . Then two branches are considered. In the
first case, we differentiate the second equation in BT UV with respect to t,
and denote the results as BT2t. By comparing equations eqsUV with BT2t,
and also making use of BT UV , an equation in Q, U, V and their derivatives
is built, which is denoted as eqQUV. Then starting from BT UV we define
Vxx, Vxxx, · · · , Vnx, and substitute them into eqQUV. The obtained equation
contains Q, U and their derivatives. Collecting the same powers for terms
U i0(Ux)i1 · · · (Unx)in and setting their coefficients to zero. Thus a system for
Q, a, c as well as parameters contained in input equations is built, which
is denoted as PS. In the second case, differentiating the first and second
equation in BTUV with respect to x, t, respectively, the obtained equations
are denoted as eqsxt. By comparing eqsxt with eqsUV, a system for P, Q is
built and denoted as PS.

solve-eqsQ(): Simplify the differential system PS by using the subpackage
simp, which is embedded in Maple 10. Then solve the simplified equations by
using the command dsolve or solve. The obtained solutions set is denoted
as SOL′.

final-BT(): We first eliminate all trivial solutions from SOL′, and denote the
remaining nontrivial solutions set as SOL. For each element of SOL, substi-
tute it into BTUV, and with the relation (20), final auto BT relations are
established. At the same time, some corresponding parameters constraints
are also generated. Output each auto BT as well as its parameters constraints
in given format.

We have computed near 30 nonlinear evolution equations utilizing the package
AutoBT on our PC. The package is efficient; for most of the equations it can
entirely automatically deliver required results within 20 seconds. If no auto BT
of the above form exists for an equation, our program will output “Can not find
non-trivial auto BT in such form!”. Furthermore, it can identify illegal form of
input equation and output “The package can only work for EQs, which can be
converted in the form uxt = H(u, ux, uxx, ...)”.

4 The Application of the Package AutoBT

To illustrate the effectiveness of the package AutoBT, some examples are consid-
ered in this section

Example 1. Consider the Burgers equation

wt + w wx − p wxx = 0, (44)

in which p is a parameter. AutoBT gives one BT relation, which reads,

196 Z. Li, Y. Liu, and H. Qian

{
(u − v)t = p (u2x − v2x) + 1

2 (vx
2 − ux

2),

vx = c1 + c2 e
v−u
2 p ,

(45)

here w = ux. We notice that parameters a = −1, c = 0 in this example. To our
knowledge, the BT relation (45) are first reported.

Example 2. Consider the mKdV equation

wt + p w2 wx + w3x = 0, (46)

in which p is a positive parameter. AutoBT gives one BT relation as follows,
⎧
⎨

⎩

(u + a v)t = −(a v3x + u3x) − p
3 (a vx

3 + ux
3),

(cu + v)x = c1 e
√

p√
3ac−3

(u+av) + c2 e
−

√
p√

3ac−3
(u+av)

,
(47)

in which c1, c2 are integral constants and w = ux. Note that in this example a, c
are arbitrary. Taking p = 6, a = −1, c = 1, the auto BT (47) is reduced to the
BT relation given in excise 10.10 in [14]. It can be seen that our obtained auto
BT (47) is more general than all the known ones.

Example 3. Consider a generalized 5-order nonlinear evolution equation[13]

wt + p w w3x + q wx wxx + r w2 wx + w5x = 0, (48)

in which p, q, r are parameters. In the literature, with (p, q, r) = (30, 60, 270) or
(20, 40, 120), and or (10, 20, 30), it reduces to standard 5th-order KdV equation;
with (p, q, r) = (30, 30, 180) or (5, 5, 5), and or (−15,−15, 45), it reduces to
the Sawada-Kotera equation; and with (p, q, r) = (30, 75, 180) or (10, 25, 20), it
reduces to the Kaup-Kupershmit equation.

For this example, AutoBT gives one BT relation, it reads:
{

(u − v)t = q
2 (vxv3x − uxu3x) + q

4 (vxx
2 − uxx

2) + (v − u)5x + r
3 (vx

3 − ux
3),

(u + v)x = − q
40 (u − v)2 + c1 (u − v) + c2,

(49)
with the parameters constraint:

p =
q

2
,

in which w = ux. It can be seen from the above that the parameters constraints
are satisfied only by standard 5th-order KdV equation. So we can conclude that
the Sawada-Kotera equation and the Kaup-Kupershmit equation do not possess
BT relation in the form (2). Taking c1 = 0, the auto BT (49) is reduced to the
BT relation (4.23) and (4.24) in [11]. This shows that our BT (49) is a more
general BT relation.

Example 4. Consider Liouville equation[14]

wxt = ew. (50)

A Method and Its Implementation for Constructing BTs 197

For this equation, AutoBT gives one BT relation, it reads:
⎧
⎨

⎩
(u + v)t = c1 (e

u−v
2 − e−

u−v
2),

(u − v)x = 2
c1

e
u+v

2 ,
(51)

in which c1 is an integral constant and w = u. The auto BT (51) is no other
than the BT relation (10.1.14) in [14].

Example 5. Consider the Vakhnenko equation[15]

(1 + wt)wx + wxxt = 0. (52)

For this equation, AutoBT can not generate its BT relations, and it just outputs
prompt information “The package can only work for EQs, which can be converted
in the form uxt = H(u, ux, uxx, ...)”.

5 Summary

Bäcklund transformation is an effective method used in the search of exact so-
lutions of nonlinear differential equations, and various methods have been de-
veloped to construct BT relations. An algorithmic method to construct a kind
of BT relations is presented and implemented in Maple, in which the package
AutoBT can entirely automatically deliver this kind of BT relations as well as
possible parameters constraints. The package AutoBT has been effectively ap-
plied to many nonlinear PDEs. Not only are previously known BT relations
recovered, but also some new or more general BTs are obtained. However, due
to the difficulty of solving differential system, sometimes our package may not
be strong enough to deal with all equations with the form (9). We will further
improve it to deal with more equations with the development of both computer
algebra and Maple.

Acknowledgment

This work was supported by National Key Basic Research Project of China
(2004CB318000) and by Shanghai Leading Academic Discipline Projec, Project
Number: B412.

References

1. Steeb, W.H., Grauel, A., Kloke, M., Spieker, B.M.: Nonlinear diffusion equations,
integrability and the Painleve property. Phys. Scripta. 31, 5 (1985)

2. Xu, G.Q., Li, Z.B.: A maple package for the Painleve test of nonlinear partial
differential equations. Chin. Phys. Lett. 20, 975 (2003)

3. Lou, S.Y.: Painleve test for the integrable dispersive long waves. Phys. Lett. A 176,
96 (1993)

198 Z. Li, Y. Liu, and H. Qian

4. Wang, M.L., Zhou, Y.B., Li, Z.B.: Application of a homogeneous balance method to
exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216,
67 (1996)

5. Fan, E.G.: Two new applications of the homogeneous balance method. Phys. Lett.
A 265, 353 (2000)

6. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press,
Cambridge (2004)

7. Ma, W.X., Geng, X.G.: Bäcklund transformations of soliton systems from sym-
metry constraints. In: Bäcklund and Darboux Transformations. The Geometry of
Solitons. CRM Proceedings & Lecture Notes, vol. 29. American Mathematics So-
ciety (2001)

8. Lin, J., Lou, S.Y.: Multisoliton solutions of the (3+1)-dimensional Nizhnik-
Novikov-Veselov equation. Comm. Theor. Phys. 37, 265–268 (2002)

9. Van de Leur, J.: Bäcklund transformations for new integrable hierarchies related
to the polynomial Lie algebra. J. Geo. Phys. 57, 435–447 (2007)

10. Sokalski, K., Wietecha, T., Lisowski, Z.: Variational approach to the Bäcklund
transformations. Acta Physica Polonica B 32, 17–28 (2001)

11. Sokalski, K., Wietecha, T., Sokalska, D.: Existence of dual equations by means of
strong necessary conditions - Analysis of integrability of partial differential nonlin-
ear equations. J. Non. Math. Phys. 12, 31–52 (2005)

12. Fu, Z.T., Liu, S.K., Liu, S.D.: New kinds of solutions to Gardner equation. Chaos,
Solitons and Fractals 20, 301–309 (2004)

13. Kichenassamy, S., Oliver, P.J.: Existence and nonexistence of solitary wave solu-
tions to higher-order model evolution equations. SIAM J. Math. Anal. 23, 1141–
1166 (1992)

14. Liu, S.K., Liu, S.D.: Nonlinear Equations in Physics. Peking University Press,
Beijing (2000)

15. Morrison, A.J., Parks, E.J.: The N-soliton solution of the modified generalised
Vakhnenko equation. Chaos, Solitons and Fractals 16, 13–26 (2003)

On the Invariant Properties of

Hyperbolic Bivariate Third-Order
Linear Partial Differential Operators

Ekaterina Shemyakova and Franz Winkler

Research Institute for Symbolic Computation (RISC),
J. Kepler University,

Altenbergerstr. 69, A-4040 Linz, Austria
{kath,Franz.Winkler}@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at

Abstract. Bivariate, hyperbolic third-order linear partial differential
operators under the gauge transformations L → g(x, y)−1 ◦ L ◦ g(x, y)
are considered. The existence of a factorization, the existence of a factor-
ization that extends a given factorization of the symbol of the operator
are expressed in terms of the invariants of some known generating set
of invariants. The operation of taking the formal adjoint can be also de-
fined for equivalent classes of LPDOs, and explicit formulae defining this
operation in the space invariants were obtained.

1 Introduction

Nowadays, constructive factorization algorithms are greatly in demand, being
used in recent algorithms for the exact solution of Linear Partial Differential
Equations (LPDEs). For example, they are used in the numerous generaliza-
tions and modifications of the 18th-century Laplace-Transformations Method,
in the Loewy decomposition method, and in other methods (see for exam-
ple [1,2,3,4,5,6]). Both the property of having a factorization, and the
property of having a factorization that extends a certain factorization of the
(principal) symbol are invariant under Gauge transformations of LPDOs, viz.
L → g(x, y)−1 ◦ L ◦ g(x, y), and therefore can be described invariantly in terms
of the invariants of a generating set of invariants, if such a set is known.

The Laplace Transformations Method [7] is an example of the use of an invari-
ant description of factorization properties for a second-order hyperbolic operator.
The normalized form of such operators is

L = Dx ◦ Dy + aDx + bDy + c , (1)

where all the coefficients are functions of x and y, and the Laplace invariants

h = c − ax − ab, k = c − by − ab (2)

form a generating set of invariants with respect to the Gauge transformations.
It is easy to see that L is factorable if and only if h or k is zero. Moreover, the

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 199–212, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

200 E. Shemyakova and F. Winkler

factorization of the principal symbol Sym(L) = X · Y can be extended if and
only if h = 0, while Sym(L) = Y · X can be extended if and only if k = 0.

The method of Laplace starts with an initial operator L and applies two trans-
formations L → L1 and L → L−1 called Laplace transformations until one of
the transformed operators is factorable (the Laplace transformations are admit-
ted by operators of the form (1)). The Laplace invariants of the transformed
operators L1 and L−1 can be expressed in terms of the invariants of the initial
operator:

h1 = 2h − k − ∂xy(ln |h|), k1 = h, h−1 = k, k−1 = 2k − h − ∂xy(ln |k|) .

So assuming that L is not factorable, and so h
= 0, k
= 0, only one invariant
for each of the transformed operators can vanish. In such the way, instead of a
sequence of operators, one considers the chain of their Laplace invariants

. . . ↔ k−2 ↔ k−1 ↔ k ↔ h ↔ h1 ↔ h2 ↔ (3)

One iterates the Laplace transformations until one of the Laplace invariants
in the sequence (3) vanishes. In this case, one can solve the corresponding trans-
formed equation in quadratures and then use the inverse substitution to obtain
the complete solution of the original equation. What is more, one may prove
(see for example [8]) that if the chain (3) is finite in both directions, then one
may obtain a quadrature-free expression for the general solution of the original
equation.

In the case considered by Laplace, the invariants h and k can be simply
obtained from the incomplete factorizations, L = (Dx + b) ◦ (Dy + a) + h =
(Dy + a) ◦ (Dx + b) + k. That is why the invariant necessary and sufficient
conditions of factorizations becomes so simple (h = 0 or k = 0). For hyperbolic
operators of the next order — order three — the situation become much more
difficult: the “remainder” of an incomplete factorization is not invariant in the
generic case, and the invariant conditions are not trivial.

In the present paper we find invariant necessary and sufficient conditions of
factorizations extending given (we consider all the possibilities) factorizations of
the principal symbol of third-order bivariate hyperbolic linear partial differential
operators. These invariant conditions are given in terms of invariants of the
generating set of invariants found in [9]. Also in the scope of the paper we
investigate the classical operation of taking the formal adjoint of an operator,
define it on the equivalent classes of the considered LPDOs, and obtain explicit
formulae in the space of invariants. Some instances of the latter result allow us
to reduce the number of case considerations when finding an invariant definition
of the property of the existence of a factorization.

The paper is organized as follows. In Section 2 preliminaries facts and
definitions are given. In Section 3 we discuss connections between factorization
of LPDOs and invariants of a family of LPDOs under the gauge transformations,
also we show how we reduce the number of factorization types to consider to

On the Invariant Properties of Hyperbolic Bivariate Third-Order LPDOs 201

just four ones. In Sections 4, 5, and 6, the existence of factorizations of these four
factorization types has been expressed in terms of invariants of the generating
system of invariants found in [9]. In Section 7 the operation of taking the formal
adjoint is defined in the space of invariants.

2 Definitions and Notations

Consider a field K with commuting derivations ∂x, ∂y acting on it. Consider the
ring of linear differential operators K[D] = K[Dx, Dy], where Dx, Dy correspond
to the derivations ∂x, ∂y, respectively. In K[D] the variables Dx, Dy commute
with each other, but not with elements of K. For a ∈ K we have the relation
Dia = aDi +∂i(a). Any operator L ∈ K[D] is of the form L =

∑d
i+j=0 aijD

i
xDj

y,
where aij ∈ K. The polynomial SymL =

∑
i+j=d aijX

iY j in formal variables
X, Y is called the (principal) symbol of L. An operator L ∈ K[D] is said to be
hyperbolic if its symbol is completely factorable (all factors are of first order)
and each factor has multiplicity one.

Let K∗ denote the set of invertible elements in K. For L ∈ K[D] and every
g ∈ K∗ consider the gauge transformation L → g−1 ◦ L ◦ g. Then an algebraic
differential expression I in coefficients of L is invariant under the gauge trans-
formations (we consider only these in the present paper) if it is unaltered by
these transformations. Trivial examples of invariants are the coefficients of the
symbol of the operator. A generating set of invariants is a basis in which all
possible differential invariants can be expressed.

We use the usual abbreviations: LPDO for Linear Partial Differential Opera-
tor, LPDE for Linear Partial Differential Equation.

3 Factorization Via Invariants

Any hyperbolic third-order LPDO in some system of coordinates has the form

L = (pDx + qDy)DxDy +
2∑

i+j=0

aijD
i
xDj

y , (4)

where all the coefficients belong to K (they are some functions of x and y) and
where p, q
= 0.

Remark 1. Note that the normalized form of such operators is slightly simpler
than above, namely, one can put without loss of generality p = 1. The introduc-
tion of the parameter p makes all the reasoning symmetric with respect to x and
y, and therefore reduces the number of cases requiring consideration on the way
to our main goal.

Operators of the form (4) admit gauge transformations, and p, q are the trivial
invariants.

202 E. Shemyakova and F. Winkler

Theorem 1. [9] The following form a generating set of invariants for operators
of the form (4):

Ip = p ,
Iq = q ,
I1 = 2q2a20 − qa11p + 2a02p

2 ,
I2 = −qp2a02y + a02p

2qy + q2a20xp − q2a20px ,
I3 = a10p

2 + (2qyp − 3qpy)a20 + a2
20q − a11yp2 + a11pyp + qpa20y

−a11a20p ,
I4 = a01q

2 + (2qpx − 3pqx)a02 + a2
02p − a11xq2 + a11qqx + qpa02x

−a02a11q ,
I5 = a00p

3q + 2a02p
3a20x − 2q2a2

20px − a02a10p
3 − a01a20p

2q
+ 1

2a11xpyp2q + 1
2a11ypxp2q + (1

2pxyp
2q − pxpypq)a11

+a11pqa20px − 1
2a11xyp3q + (qqxp2 − q2pxp)a20y − 2a02p

2a20px

−a11p
2qa20x + (qp2qy − pq2py)a20x + 2q2a20a20xp+

(qqxyp2 − q2pxyp + 4q2pxpy − 2qpxqyp − 2qqxppy)a20

+a20a11a02p
2 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

Any set of values of these invariants uniquely defines an equivalent class of
operators of the form (4). All the invariant properties of such operators can be
described in terms of the invariants of the above generating set.

Lemma 1. The property of having a factorization (or a factorization extending
a certain factorization of the symbol) is invariant.

Proof. Let L = F1 ◦F2◦ . . .◦Fk, for some operators Fi ∈ K[D]. For every g ∈ K∗

g−1 ◦ L ◦ g =
(
g−1 ◦ F1 ◦ g

)
◦
(
g−1 ◦ F2 ◦ g

)
◦ . . . ◦

(
g−1 ◦ Fk ◦ g

)
,

and since the gauge transformations do not alter the symbol of an LPDO, we
prove the statement of the theorem.

Remark 2. Recall that as for two LPDOs L1, L2 ∈ K[D] we have

SymL1◦L2
= SymL1

· SymL2
,

any factorization of an LPDO extends some factorization of its symbol. In gen-
eral, if L ∈ K[D] and SymL = S1 · . . . · Sk, then we say that the factorization

L = F1 ◦ . . . ◦ Fk, SymFi
= Si, ∀i ∈ {1, . . . , k},

is of the factorization type (S1) . . . (Sk).

Consider all possible factorizations of the symbol of an LPDO (4), namely
SymL = (pX + qY)XY . Owing to the non-commutativity of LPDOs one has
to consider factorizations of the polynomial SymL assuming that factors do not
commute. Thus SymL = (pX + qY)XY has 12 different factorizations:

On the Invariant Properties of Hyperbolic Bivariate Third-Order LPDOs 203

(S)(XY) ,

(XY)(S) ,

(X)(Y S) , (Y)(XS) ,

(Y S)(X) , (XS)(Y) ,

(S)(X)(Y) , (S)(Y)(X) ,

(X)(S)(Y) , (Y)(S)(X) ,

(X)(Y)(S) , (Y)(X)(S) ,

where S = (pX + qY). By Remark (1) it is enough to consider one of the
factorizations for each of the lines of the list above. Thus, there are seven cases
to consider. Proceeding further, we can almost half this number of cases (i.e. 7
cases) once we know how to express generating invariants of the formal adjoint
L† of an LPDO L in terms of generating invariants of L. In Section 7 we find
such formulae, and so only the the following cases need to be considered:

(S)(XY) ,

(X)(Y S) ,

(S)(X)(Y) ,

(X)(S)(Y) .

4 Factorization Type (pX + qY)(XY)

Theorem 2. Consider an equivalent class of (4) given by the values of the in-
variants I1, I2, I3, I4, I5 (5). The operators of the class have a factorization of
the factorization type (pX + qY)(XY) if and only if the following two conditions
hold.

I3q
3 − I4p

3 + pq(pI1x − qI1y) + pq(qy − px)I1 + 2(pyq2 − qxp2)I1 − 3pqI2 = 0 ,
IsI2 + Ir + 2pq2I2x + q3I2y = 0 .

Proof. First, using the formulae of the invariants (5), we express the coefficients
a11, a10, a01, a00 of (4) in terms of these invariants and a20, a02. We have, for
example, a11 = (−I1 +2q2a20 +2a02p

2)/(pq), and other expressions are too large
to give them here explicitly. Then an operator (4) of the class has factorization
F(pX+qY)(XY) = (pDx+qDy+r)◦(Dxy+aDx+bDy+c), where all the coefficients
are functions of x and y, takes place if and only if L−F(pX+qY)(XY) = 0. Equating
the coefficients at Dxx, Dxy, Dyy, Dy on the both sides of this equality, one
computes

a = a20/p , b = a02/q , r = − 1
pq

I1 +
q2a20 + a02p

2

pq
,

c = (I4p
2 − qpI1x + 2q3pa20x + (2qxp + qpx)I1 − 2q3pxa20

+a02a20q
2p − q2p2a02y + qp2a02qy)/(q3p2)

204 E. Shemyakova and F. Winkler

as p and q are known to be different from zero. While equating the coefficients of
Dx and the “free” coefficients of both sides of that, we get two conditions for the
existence of a factorization, which still involve the coefficients a20 and a02 and,
therefore, are not invariant. On the other hand, by Lemma 1, there should be
a way to describe existence of a factorization (a factorization extending certain
factorization of the symbol) invariantly.

Consider the first condition, which after multiplication by p2q3, can be noticed
to be equivalent to the following constrain for invariants of L:

C10 = I3q
3−I4p

3+pq(pI1x−qI1y)+pq(qy −px)I1+2(pyq
2−qxp2)I1−3pqI2 = 0 .

(6)
Consider the second condition multiplied for convenience on both sides by

p2q4 (denote the result as C00 = 0). It is a large expression. Consider all the
terms of C00 with second-order derivatives of a20, a02:

−2p2q4a20xx ,−pq5a20xy , 2q3p3a02xy , 2p2q4a02yy .

Thus, subtracting 2pq2I2x + q3I2y from C00, we cancel the terms with second-
order derivatives of a20, a02. Denote the result of the subtraction by C001.
Consider terms of C001 containing first-order derivatives of a20, a02:

q3(I1 + 2q2py + 2qpqy + 4p2qx + 4pqpx − 3a02p
2)a20x , (7)

−q2p(I1 + 2q2py + 2qpqy + 4p2qx + 4pqpx − 3a02p
2)a02y , (8)

and compare them with those in I2. One can see that the ratio of the coefficient
at a20x in (7) to that in I2 equals to the ratio of the coefficient at a02y in (8) to
that in I2, and this ratio is

s = Is − 3pqa02 ,

where Is = q
p (4p(qpx+pqx)+2q(pqy+qpy)+I1), that is an invariant. Subtracting

sI2 from C001 (denote the result of the subtraction by C002), we cancel all the
terms contaning first-order derivatives of a20, a02, and get

C002 = (I3q
3−I4p

3 +qp2I1x −pq2I1y +pq(qy −px)I1 +2(pyq
2−qxp2)I1)a02 +Ir ,

(9)
where Ir = q3p

2 I1xy − qp2(qI4y −pI4x)+ q3

p I5 + q2p2I1xx − 3q2pqx

2 I1y +pI1I4 +
(
−

2qp2qxx+6q2
xp2+q2qxpy+4qpqxpx−q2ppxx+q2pxqy− 3q2pqxy

2 +5qpqxqy +2p2
xq2−

q3pxpy

p

)
I1+3p2(qqy +pqx)I4+

(
2qx+ qpx

p

)
I2
1 −pq

(
3qqy

2 +2qpx+4pqx

)
I1x−qI1I1x

is an invariant. Comparing (9) with (6), one can notice that the coefficient at
a02 in C002 equals (C10 +3pqI2). As C10 = 0 is a necessary condition for L to be
factorable with the considered factorization type, the coefficient at a02 in C002

becomes just 3pqI2. Which is fortunately is canceled in expression for C00, when
we combine the results:

C00 = (C10 + 3pqI2)a02 + (Is − 3pqa02)I2 + Ir + 2pq2I2x + q3I2y

= C10a02 + IsI2 + Ir + 2pq2I2x + q3I2y .

On the Invariant Properties of Hyperbolic Bivariate Third-Order LPDOs 205

Corollary 1 (case p = 1). Consider equivalent classes of (4) possessing the
property p = 1, and given by the values of the invariants I1, I2, I3, I4, I5 (5). The
operators of the class have a factorization of the factorization type (X+qY)(XY)
if and only if

{
I3q

3 − I4 + q(I1x − qI1y) + qqyI1 − 2qxI1 − 3qI2 = 0 ,
IsI2 + Ir + 2q2I2x + q3I2y = 0 .

where Is = q(4qx + 2qqy + I1) and Ir = q3

2 I1xy − q(qI4y − I4x) + q3I5 + q2I1xx −
3q2qx

2 I1y + I1I4 +
(
− 2qqxx +6q2

x − 3q2qxy

2 +5qqxqy

)
I1 + 3(qqy + qx)I4 + 2qxI2

1 −

q
(

3qqy

2 + 4qx

)
I1x − qI1I1x.

5 Factorization Type (X)(Y S)

Theorem 3. Consider an equivalent class of (4) given by the values of the in-
variants I1, I2, I3, I4, I5 (5). The operators of the class have a factorization of
the factorization type (X)(pXY + qY 2) if and only if

{
I4 − 2qxpxq + 2q2

xp − qpqxx + q2pxx = 0 ,
−4p2qxI2 + p2qI2x + Ir = 0 ,

where Ir = −3/2qxqp2I1y + I5q
2 + 1

2I1xyq2p2 − q3pI3x + (q2pqx + 2pxq3)I3 +
(−pxyq

2p + 3qxpyqp + 2qxqyp2 − 1
2qxyqp

2 + pxpyq2)I1 + (−pyq
2p − 1

2qyqp2)I1x.

Proof. The case we consider here is much easier than that of section 4. As we
do there first we express a00, a10, a01, a11 in terms of a20, a02 and the invariants
(5). Then for an operator L (4) of the class consider a factorization of the form

L = (Dx + r) ◦ (pDxy + qDyyaDx + bDy + c) , (10)

where all the coefficients belong to K (some functions of x and y). Substituting
just found expressions for a00, a10, a01, a11, and equating the coefficients at
Dyy, Dxx, Dxy, Dx on the both sides of (10), one computes r = (a02 − qx)/q,
a = a20, b = −(I1 − 2q2a20 − a02p

2 − p2qx + pxqp)/q/p, c = −(−I3q
2 + a20qI1 −

a2
20q

3 − a20qa02p
2 + q3pya20 + qpI1y − q3pa20y − 2qp3a02y − qypI1 + 2qyp

3a02 −
2qpyI1 − qa20p

2qx + a20xq2p2)/q2/p2, as p and q are known to be different from
zero. Equating the coefficients at Dy we get first constrain on invariants,

I4 − 2qxpxq + 2q2
xp − qpqxx + q2pxx = 0 . (11)

Equating the “free” coefficients of the both sides of (10), we get a condition
of existence of a factorization in particular in terms of a20 and a02. To cancel
denominators, multiply this condition on the both sides by p3q3 (denote the
result as C00 = 0). Consider all the terms of C00 with second-order derivatives
of a20, a02:

p3q3a20xx ,−q2p4a02xy .

206 E. Shemyakova and F. Winkler

Thus, subtracting p2qI2x from C00, we kill all the terms with second-order deriva-
tives of a20, a02. Denote the result of the subtraction by C001. Consider terms
of C001 containing first-order derivatives of a20, a02:

−4qxp3q2a20x , 4qxqp4a02y ,

and compare them with those in I2. One can see that subtracting −4p2qxI2 from
C001 we cancel all the terms containing first-order derivatives of a20, a02. Denote
the result of this subtraction by C002, then

C002 = (I4qp
2 − 2q2p2qxpx + q3p2pxx + 2qp3q2

x − q2p3qxx)a20 + Ir , (12)

where Ir = −3/2qxqp2I1y + I5q
2 + 1

2I1xyq2p2 − q3pI3x + (q2pqx + 2pxq3)I3 +
(−pxyq

2p + 3qxpyqp + 2qxqyp2 − 1
2qxyqp

2 + pxpyq2)I1 + (−pyq
2p − 1

2qyqp2)I1x is
an invariant. The constrain (11) implies that the coefficients at a02 in C002 is
zero provided the factorization (10) takes place. Thus, combining the results, we
have

C00 = −4p2qxI2 + p2qI2x + Ir .

Corollary 2 (case p = 1). Consider equivalent classes of (4) possessing the
property p = 1, and given by the values of the invariants I1, I2, I3, I4, I5 (5). The
operators of the class have a factorization of the factorization type (X)(XY +
qY 2) if and only if

⎧
⎨

⎩

I4 + 2q2
x − qqxx = 0 ,

I5q
2 − 4p2qxI2 + p2qI2x + 1

2I1xyq2 − I3xq3−
3
2qxI1yq − 1

2qyI1xq + qxI3q
2 + (− 1

2qxyq + 2qxqy)I1 = 0 .

6 Factorization Types (pX + qY)(X)(Y) and
(X)(pX + qY)(Y)

Here we omit all the proofs as they employ similar to the section 4 ideas and are
much simpler.

Theorem 4. Consider an equivalent class of (4) given by the values of the in-
variants I1, I2, I3, I4, I5 (5). The operators of the class have a factorization of
the factorization type (pX + qY)(X)(Y) if and only if

⎧
⎪⎪⎨

⎪⎪⎩

I3q
2 − qpI1y + (qyp + 2qpy)I1 = 0 ,

I4p
2 − I1xqp + (2qxp + pxq)I1 = 0 ,

I5q
2 + (pxpq2 + 1

2qxp2q)I1y − 1
2I1xyp2q2 + (pypq2 + 1

2qyp2q)I1x+
(−3pxpyq

2 − pxqypq + pxypq2 + 1
2qxyp

2q − qxpypq − qxqyp2)I1 = 0 .

On the Invariant Properties of Hyperbolic Bivariate Third-Order LPDOs 207

Theorem 5. Consider an equivalent class of (4) given by the values of the in-
variants I1, I2, I3, I4, I5 (5). The operators of the class have a factorization of
the factorization type (X)(pX + qY)(Y) if and only if

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I3q
2 − qpI1y + qypI1 + 2qpyI1 = 0 ,

2pq2
x − qpqxx + q2pxx + I4 − 2qxpxq = 0 ,

I5q
2 − 1

2p2q2I1xy + 1
2qxqp2I1y + pxq2pI1y+

(pyq2p + 1
2qyqp2)I1x + (−qxqyp2 + 1

2qxyqp2−
3pxpyq

2 + pxyq
2p − qxpyqp − pxqyqp)I1 = 0 .

7 Formal Adjoint

In this section we consider the operation of taking the formal adjoint of an LPDO,
and define such operation on the equivalent classes of third-order bivariate non-
hyperbolic LPDO. At the end of the section we apply this knowledge to complete
the cases’ consideration in the finding of invariant condition of the property of
the existence of a factorization of certain factorization type.

For an operator L =
∑

|J|≤d aJDJ , where aJ ∈ K, J ∈ Nn and |J | is the sum
of the components of J , the formal adjoint is defined as

L†(f) =
∑

|J|≤d

(−1)|J|DJ(aJf) , ∀f ∈ K .

The formal adjoint possesses the following useful for the factorization theory
properties:

(L†)† = L , (L1 ◦ L2)† = L†
2 ◦ L†

1 , SymL = (−1)ord(L)SymL† .

The property of having a factorization is invariant under the operation of taking
the formal adjoint, while the property of having a factorization of certain fac-
torization type is not invariant, and an operator L has a factorization of some
factorization type (S1)(S2) (where SymL = S1S2) if and only if L† has that of
factorization type (S2)(S1).

Lemma 2. The operation of taking the formal adjoint can be defined on the
equivalent classes of LPDOs.

Proof. Show that operation of taking the formal adjoint and the gauge transfor-
mations of LPDOs commute. For every g ∈ K∗, and f = g−1 we have

(g−1 ◦ L ◦ g)† = g† ◦ L† ◦ (g−1)† = g ◦ L† ◦ g−1 = f−1 ◦ L† ◦ f.

Example 1 (LPDOs of order 2). For operators of the form

L = Dxy + aDx + bDy + c

there is a complete generating set of invariants that consists of first-order invari-
ants: h = c − ax − ab and k = c − by − ab. For the formal adjoint

L† = Dxy − aDx − bDx + c − ax − by

they are h† = c − by − ab and k† = c − ax − ab, and so ht = k, kt = h.

208 E. Shemyakova and F. Winkler

Theorem 6 (formal adjoint for equivalent classes). Consider the equiva-
lent classes of (4) given by the values of the invariants I1, I2, I3, I4, I5 (5). Then
the operation of taking of the formal adjoint is defined by the following formulae

I†1 =I1 − 2q2py − 2p2qx + 2pxqp + 2qyqp ,

I†2 =−I2 − qp2qxy + qyp2qx + q2ppxy − q2pxpy ,

I†3 = −I3 + 1
q2

(
2pI2 − (2pyq + qyp)I1 + qpI1y − 2pyqyq2p+

2q3p2
y + qyyq2p2 − q3ppyy

)
,

I†4 =−I4 + 1
p2

(
− 2qI2 − (pxq + 2qxp)I1 + qpI1x + 2p3q2

x − 2p2qxqpx

+pxxq2p2 − qp3qxx

)
,

I†5 =I5 + p1I1 + p3I3 + p4I4 + p12I1y + p11I1x + p2I1xy − qpI3x − p3

q I4y + p0

−pI2y + p2

q I2x + (−2q2p3qx + 4pyq4p − q2pI1 − 2q3p2px)/(q4p)I2 ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)
where p1 = (4qxpyp + pxqyp − 2qxyp

2)/q + (4qxqyp2)/q2 + 3pxpy − pxyp, p3 =
2qpx + pqx, p4 = (2qyp3 + p2pyq)/q2, p0 = p3qxqyy − 2q2pxp2

y − qqxp2pyy +
q2pxppyy−qp2qyypx−2p2pyqyqx+2qqxpp2

y+2qpypqypx, p11 = −(2pypq+qyp
2)/q,

p12 = −(pxpq + 2qxp2)/q.

Proof. Consider an operator L in the form (4) of some equivalent class and
express the coefficients a11, a10, a01, a00 of it in terms of the invariants (5) and
a20, a02. Then compute the formal adjoint L†, and compute the invariants (5).
The first invariant of L† is already given in terms of the invariants of L and in
the same form as in the statement of the theorem. The second invariant of L† is

I†2 = qp2a02y − qp2qxy −a02p
2qy + qyp2qx + q2ppxy − q2a20xp− q2pxpy + q2a20px .

Employing the expression for the invariant I2 we eliminate a20 and a02 from this
expression and get I†2 as it is in the statement of the theorem. Analogously, we
obtain the forms for I†3 , I†4 that are given in the statement of the theorem.

The fifth invariant I†5 of L† is a large expression containing a20 and a02, and
their second and first derivatives. The terms containing a02yy are canceled if we
add pI2y to I†5 . Then the only term containing a20xx is p3qa20xx, and we cancel
it by subtraction of p2I2x/q. Then no second-order derivatives are left, and we
notice that the ratio

C = (−2q2p3qx + 4pyq
4p − q2pI1 − 2q3p2px)/(q4p)

of the coefficient for a20x in the obtained expression to that in I2 is equal to the
ratio of the coefficient for a02y in the obtained expression to that in I2. Thus,
subtracting CI2, we cancel first-order derivatives, and have as the result the
invariant expression

I55 = I5 + p1I1 + p3I3 + p4I4 + p12I1y + p11I1x + p2I1xy − qpI3x − p3

q
I4y + p0 ,

On the Invariant Properties of Hyperbolic Bivariate Third-Order LPDOs 209

where p1 = (4qxpyp + pxqyp − 2qxyp
2)/q + (4qxqyp2)/q2 + 3pxpy − pxyp, p3 =

2qpx + pqx, p4 = (2qyp3 + p2pyq)/q2, p0 = p3qxqyy − 2q2pxp2
y − qqxp2pyy +

q2pxppyy−qp2qyypx−2p2pyqyqx+2qqxpp2
y+2qpypqypx, p11 = −(2pypq+qyp2)/q,

p12 = −(pxpq + 2qxp2)/q are differential-algebraic expressions of p and q. Thus,

I†5 = I55 − pI2y +
p2

q
I2x + CI2 .

Theorem 6 is the one that allows us to half the cases necessary to consider to
describe existence of factorizations of different factorizations types. Below is an
example on how to obtain invariant conditions of existence of a factorization of
the certain type of factorizations (XY)(pX + qY), if those are given (found in
the section 4) for the “symmetric” factorization type (pX + qY)(XY).

Corollary 3. Consider an equivalent class of (4) given by the values of the
invariants I1, I2, I3, I4, I5 (5). Operators of the class have a factorization of fac-
torization type (XY)(pX + qY) if and only if

⎧
⎪⎪⎨

⎪⎪⎩

0 = q0 − qpI2 + q3I3 − p3I4 ,

0 = p0 + p1I1 − 4pqqxI2 + p3I3 + p4I4 + q3

p I5 − q4I3x

−(pq2qy/2 + q3py)I1x + p3qI4x + pI1I4 + (pq3)/2I1xy

+pq2I2x − 3pq2qx/2I1y ,

where q0, p0, p1, p3, p4 are expressions of p, q and their derivations, more pre-
cisely, q0 = −2pyqyq3p+qyyq

3p2−q4ppyy+q3p2pxy−q2p3qxy−pxxq2p3+qp4qxx+
2q4p2

y −2p4q2
x − q3ppxpy + qyqp

3qx +2p3qxqpx, p0 = 2pq3pxqxpy −2p2q2qxqypx +
2p2q3pxxpx+8p4qqxqxx−10p4q3

x−5p3pxxq2qx−p4q2qxxx+p3q3pxxx−5p3q2qxxpx−
4p2q2p2

xqx−pq4pxxpy+14p3q2
xqpx+2p3qq2

xqy+p2q3pxxqy+p2q3qxxpy−p3q2qyqxx−
2p2q2q2

xpy, p1 = 3q2qxpy−2pqqxpx−p2qqxx−q3pxy+1/pq3pxpy+2p2q2
x+pq2pxx+

2pqqxqy − 1
2pq2qxy, p3 = 2q4px/p + q3qx, p4 = 2p2pxq + p2qqy − 5p3qx − ppyq2.

Proof. Operators of the class have a factorization of factorization type (XY)(pX
+ qY) if and only if their formal adjoints L† have a factorization of factorization
type (−pX − qY)(XY), which by theorem 2 is true if and only if −I†3q3 +
I†4p3 + pq(−pI1tx + qI1ty)+ pq(−qy + px)I†1 + 2(−pyq

2 + qxp2)I†1 − 3pqI†2 = 0 and
IstI

†
2 +Irt −2pq2I2tx −q3I2ty = 0. Using the results of section 7, these conditions

can be rewritten in terms of the five invariants (5) of L, and after simplifications
the expressions given in the statement of the theorem can be obtained.

Consider the special case where p and q are constants. Then without loss of
generality one can assume p = q = 1.

Corollary 4 (case of the symbol with constant coefficients). An LPDO
(4) with p = q = 1 has a factorization of factorization type (XY)(X + Y) if and
only if {

I3 = I2 + I4 ,
0 = I5 + 1

2I1xy + I4I1 .

210 E. Shemyakova and F. Winkler

8 Symbol of Constant Coefficients

In the criteria for the existence of factorizations of different factorization types,
the coefficients p and q of the symbol, and their derivatives occur fairly often.
Therefore, it is interesting to look at the structure of the formulae in the impor-
tant particular case in which p and q are constants, and, therefore, there exists
a normal form of the operator with the (principal) symbol (X + Y)XY . Thus,
without loss of generality one can assume p = q = 1, and then combining the
results of the previous sections we obtain the necessary and sufficient conditions
of the existence of factorizations for each of the 12 different types.

Theorem 7. Consider equivalent classes of (4) possesing the property p = q =
1, and given by the values of the invariants I1, I2, I3, I4, I5 (5). Operators of the
class have a factorization of factorization type

(S)(XY) if and only if

I3 − I4 + I1x − I1y − 3I2 = 0 ,
I1I2 + Ir + 2I2x + I2y = 0 ,

}
(14)

where Ir = 1
2I1xy − I4y + I4x + I5 + I1xx + I1I4 − I1I1x;

(S)(X)(Y) if and only if

(14) & I2 − I4 + I1x = 0 ;

(S)(Y)(X) if and only if

(14) & − 2I2 − I4 + I1x = 0 ;

(X)(SY) if and only if

I4 = 0 & I2x + I5 − I3x + I1xy/2 = 0 ; (15)

(X)(S)(Y) if and only if

(15). & I3 − I1y − 2I2 = 0 ;

(X)(Y)(S) if and only if
(15). & I3 = I2 ;

(XY)(S) if and only if

I4 = I3 − I2 & I1xy/2 + I1I4 + I5 = 0 .

On the Invariant Properties of Hyperbolic Bivariate Third-Order LPDOs 211

(Y S)(X) if and only if

I4 = I1x − 2I2 & I5 = I1I2 .

(XS)(Y) if and only if

I3 − I1y − 2I2 = 0 & I5 = I2x + I1xy/2 ;

(Y)(SX) if and only if

I3 = 0 & I5 = (I4 + I2)y + I1I2 − I1xy/2 ; (16)

(Y)(X)(S) if and only if
(16) & I4 = −I2 ;

(Y)(S)(X) if and only if

(16) & I4 − I1x = −2I2 ;

Theorem 8 (formal adjoint for equivalent classes). Consider the equiva-
lent classes of (4) possessing the properties p = 1 and q = 1 and which are given
by the values of the invariants I1, I2, I3, I4, I5 (5). Then the operation of taking
of the formal adjoint is defined by the following formulae

I†1 = I1 ,

I†2 = −I2 ,

I†3 = −I3 + 2I2 + I1y ,

I†4 = −I4 − 2I2 + I1x ,

I†5 = I5 + I1xy − I3x − I4y − I2y + I2x − I1I2 .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

9 Conclusion

We obtained invariant necessary and sufficient conditions for the existence of
factorizations extending given factorizations of the principal symbol of
operators (any such factorization of the symbol corresponds to a factorization
type). We defined the classical operation of taking the formal adjoint of an oper-
ator for the equivalent classes of the considered LPDOs. In particular, this result
allows us to reduce the number of case considerations when finding an invari-
ant definition of the property of the existence of a factorization. The existence
criterium are found explicitly for the factorization types (S)(XY), (X)(Y S),
(S)(X)(Y), (X)(S)(Y), where S = (pX + qY). Invariant conditions for the
other eight possibilities of factorization types can be derived from these ones,
and consideration of the most difficult case (XY)(S) is provided as an example
of such derivation.

212 E. Shemyakova and F. Winkler

For the future, it would be interesting to find such conditions in an algorithmic
way for operators of general order. Another line of investigations might be the
derivation of invariant conditions for generalized factorization in the sense of
Tsarev [6].

Acknowledgments. This work was supported by Austrian Science Foundation
(FWF) under the project DIFFOP.

References

1. Anderson, I., Juras, M.: Generalized Laplace invariants and the method of Darboux.
Duke J. Math. 89, 351–375 (1997)

2. Anderson, I., Kamran, N.: The variational bicomplex for hyperbolic second-order
scalar partial differential equations in the plane. Duke J. Math. 87, 265–319 (1997)

3. Athorne, C.: A z × r toda system. Phys. Lett. A. 206, 162–166 (1995)
4. Grigoriev, D., Schwarz, F.: Generalized loewy-decomposition of d-modules. In: IS-

SAC 2005: Proceedings of the 2005 international symposium on Symbolic and alge-
braic computation, pp. 163–170. ACM, New York (2005)

5. Tsarev, S.: Generalized laplace transformations and integration of hyperbolic sys-
tems of linear partial differential equations. In: ISSAC 2005: Proceedings of the
2005 international symposium on Symbolic and algebraic computation, pp. 325–
331. ACM Press, New York (2005)

6. Tsarev, S.: Factorization of linear partial differential operators and darboux’ method
for integrating nonlinear partial differential equations. Theo. Math. Phys. 122, 121–
133 (2000)

7. Darboux, G.: Leçons sur la théorie générale des surfaces et les applications
géométriques du calcul infinitésimal, vol. 2. Gauthier-Villars (1889)

8. Goursat, E.: Leçons sur l’intégration des équations aux dérivées partielles du seconde
ordre a deux variables indépendants, Paris, vol. 2 (1898)

9. Shemyakova, E., Winkler, F.: A full system of invariants for third-order linear partial
differential operators in general form. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov,
E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 360–369. Springer, Heidelberg (2007)

Symbolic Solution to Magnetohydrodynamic

Hiemenz Flow in Porous Media

Seripah Awang Kechil1 and Ishak Hashim2

1 Department of Mathematics, Universiti Teknologi MARA, 40450 Shah Alam
Selangor, Malaysia

seripah@tmsk.uitm.edu.my
2 School of Mathematical Sciences, National University of Malaysia, 43600 Bangi

Selangor, Malaysia
ishak h@ukm.my

Abstract. A system of nonlinear ordinary differential equations gov-
erning the boundary layers of magnetohydrodynamic (MHD) Hiemenz
flow in porous media is solved using a simple and efficient analytical tech-
nique of Adomian decomposition method (ADM) and Padé approximant
through the computer algebra package system Maple. Several symbolic
features of the Maple system are utilized to develop specific routines that
compute the approximate analytical solutions of the stream, velocity and
temperature functions for some exemplary prescribed parameters. Com-
parative study shows the well agreement of the present symbolic results
with the existing numerical results.

1 Introduction

Multitudinous physical phenomena that exhibit nonlinear behaviour are
typically modeled by systems of nonlinear ordinary or partial differential equa-
tions. Besides numerical approaches, computer algebra software packages and
mathematical methods that provide exact and approximate analytical solutions
are powerful tools for solving nonlinear differential equations. Computer algebra
system expedites tedious and massive computations by manipulating mathe-
matical expressions symbolically involving rote skills in algebra and calculus.
Powerful systematic routines can be developed to obtain symbolic solutions to
wide range of differential equations and enable the qualitative and quantitative
properties of the problem to be easily investigated with less time and efforts.

Designing effective symbolic algorithms to handle large group of differential
equations is a difficult task and various solution approaches can be considered
such as the power series expansion method and the perturbation technique.
Yahaya et al. [1] demonstrated the performance of the multistage modified Ado-
mian decomposition method for solving the N -th order initial value problems of
linear and nonlinear ordinary differential equations using Maple system. Li [2]
proposed the use of Taylor’s expansion and conversion from linear ordinary
differential equation with variable coefficients to systems of linear equations.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 213–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

214 S.A. Kechil and I. Hashim

Edneral [3] investigated the periodic solutions of ODE systems using the normal
form method by transforming the systems to simpler sets treated by multivari-
able power series and Mathematica. Pratibha and Jeffrey [4] used Maple system
to solve a second-order nonlinear ordinary differential equation of Stokes-flow
problem by developing routines to obtain large numbers of terms in the series
solutions at a regular singular point and ordinary points.

This paper addresses a computational procedure involving a simple analytical
approach of the Adomian decomposition method [5] based on series expansion
and Padé approximant [6] for solving boundary-layer equations of MHD Hiemenz
flow in porous media [7] through the computer algebra system Maple as an essen-
tial analytical tool. The ADM has been successfully applied to solve a wide class
of linear and nonlinear differential equations in multiple disciplines [5,8,9,10,11].
The ADM can be extended to solve systems of differential equations and yields
approximate analytical solutions in terms of a rapidly convergent infinite series
with easily computable terms. It permits a reliably accurate quantitative solution
and avoids the need for discretisation, perturbation, linearisation or unrealistic
assumptions [5].

In fluid dynamics, by means of similarity transformations, boundary-layer
equations of steady flows are normally reduced to a single or a system of nonlin-
ear ordinary differential equation(s) which model the momentum, heat and mass
transfer in the flow field. Studies on boundary-layer equations using ADM in-
clude the recent works of Hashim [8] on the classical Blasius’ equation, Zheng et
al. [12] on the laminar boundary layer equation of Marangoni convection in In-
Ga-Sb system and Wazwaz [13] on boundary layer equation of viscous flow due
to a moving sheet. Very recently, the ADM has been shown efficient in obtaining
approximate analytical solution to an unsteady boundary layer problem over an
impulsively stretching sheet by Awang Kechil and Hashim [14] and a system
of coupled nonlinear ordinary differential equations of free-convective boundary
layer [15]. Awang Kechil et al. [16] demonstrated that a ADM solution to a gen-
eral boundary value problem can be used to obtain specific solutions to boundary
layer equations with identical mathematical context but under different physical
conditions.

2 Boundary Layer Equations of MHD Hiemenz Flow

Consider a steady two-dimensional laminar forced convection in MHD Hiemenz
flow of an incompressible, electrically conducting viscous fluid against a flat
plate through porous media with variable wall temperature and uniform surface
mass flux. A transverse magnetic field is applied and the fluid is assumed to
have constant properties. The magnetic Reynolds number is assumed small and
the induced magnetic field, the Hall effect and the viscous dissipation terms
are neglected. The governing boundary layer equations consist of a system of
nonlinear ordinary differential equations, cf. Yih [7],

Symbolic Solution to MHD Hiemenz Flow in Porous Media 215

Prf ′′′ + ff ′′ + (1 − f ′2) + Ω(1 − f ′) + M2(1 − f ′) = 0 , (1)
θ′′ + fθ′ − λf ′θ = 0 , (2)

subject to boundary conditions

f(0) = fw, f ′(0) = 0, f ′(∞) = 1 , (3)
θ(0) = 1, θ(∞) = 0 , (4)

where f is the stream function, θ temperature, Pr Prandtl number, Ω

permeability parameter, M Hartmann number, λ wall temperature exponent
and fw suction or injection parameter, fw < 0 is for injection and fw > 0 is
for suction while fw = 0 corresponds to an impermeable surface. Prime denotes
differentiation with respect to η.

The system of the differential equations (1) and (2) will be solved in the
domain [0,∞) subject to the initial boundary conditions and the asymptotic
behaviour at the unbounded domain (3) and (4). Padé approximant is used to
handle the difficulty that arises when trying to match the boundary conditions
at infinity in order to determine the unknowns f ′′(0) and θ′(0). Yih [7] employed
the implicit finite difference of Keller-box method to obtain numerical solutions
to the problem. We will employ the ADM and Padé approximant by developing
several small routines in computer algebra package Maple to carry out specific
symbolic tasks. Algorithms for recursive relations will be developed to calculate
the Adomian polynomials and the ADM series solutions. The powerful com-
mand Padé in Maple system enables the long expression of the ADM series to
be conveniently simplified into rational functions which approximate the exact
analytical solution that valid over a large interval of η.

3 Solution Procedure

Now we shall demonstrate the simple applications of the ADM and Padé
approximants to solve the system (1)–(4) for some selected values of the
parameters involved. The general expressions of the Adomian polynomials and
the recursive decomposition of the ADM series will be derived and coded in
the computer algebra system Maple. First, let us introduce the two linear dif-
ferential operators L1 ≡ d3/dη3 and L2 ≡ d2/dη2 and their inverse operators,
L−1

1 (·) ≡
∫ η

0

∫ η

0

∫ η

0 (·)dtdtdt and L−1
2 (·) ≡

∫ η

0

∫ η

0 (·)dtdt, respectively. Eqs. (1)
and (2) written in operator forms are

L1f = − 1
Pr
[
ff ′′ +

(
1 − f ′2)+ Ω (1 − f ′) + M2 (1 − f ′)

]
, (5)

L2θ = λf ′θ − fθ′ , (6)

Applying the inverse operators L−1
1 and L−1

2 on both sides of (5) and (6)
respectively together with the boundary conditions at η = 0 in (3) and (4),
we obtain

216 S.A. Kechil and I. Hashim

f = fw +
1
2
β1η

2 − 1
6Pr
(
1 + Ω + M2

)
η3 +

1
Pr

L−1
1

[(
Ω + M2

)
f ′

+f ′2 − ff ′′
]

, (7)

θ = 1 + β2η + L−1
2 (λf ′θ − fθ′) , (8)

where β1 = f ′′(0) and β2 = θ′(0).
The nonlinear terms in (7) and (8) are expressed as functions of f, θ and their

derivatives, N1(f) = f ′2 − ff ′′ and N2(f, θ) = λf ′θ − fθ′. Thus (7) and (8) are

f = fw +
1
2
β1η

2 − 1
6Pr
(
1 + Ω + M2

)
η3

+
1
Pr

L−1
1

[(
Ω + M2

)
f ′ + N1(f)

]
, (9)

θ = 1 + β2η + L−1
2 [N2(f, θ)] . (10)

The dimensionless functions f(η) and θ(η) and the nonlinear functions N1(f)
and N2(f, θ) are decomposed into series as follows,

f(η) =
∞∑

k=0

fk(η), θ(η) =
∞∑

k=0

θk(η) , (11)

N1(f) =
∞∑

k=0

Ak, N2(f, θ) =
∞∑

k=0

Ek , (12)

where Ak and Ek are the so-called Adomian polynomials [5]. The convergence
aspects of the Adomian’s series (11) were studied by Cherruault [17], Cherruault
and Adomian [18] and Hosseini and Nasabzadeh [19].

The Adomian polynomials Ak and Ek can be derived from the formula [5],

Ak =
1
k!

[
dk

dλk
N

(∞∑

i=0

λifi

)]

λ=0

, k ≥ 0 . (13)

Hence, for the nonlinear terms N1(f) and N2(f, θ), the Adomian polynomials
A0 and E0 are,

A0 = (f ′
0)

2 − f0f
′′
0 , (14)

E0 = λf ′
0θ0 − f0θ

′
0 , (15)

and the general expressions of Ak and Ek for k ≥ 1,

Ak =

⎧
⎨

⎩
2
∑(k−1)/2

i=0 f ′
if

′
k−i −

∑k
i=0 fif

′′
k−i if k odd ,

2
∑(k−2)/2

i=0 f ′
if

′
k−i +

(
f ′

k/2

)2
−
∑k

i=0 fif
′′
k−i if k even ,

(16)

Ek =
k∑

i=0

(
λf ′

iθk−i − fiθ
′
k−i

)
. (17)

Symbolic Solution to MHD Hiemenz Flow in Porous Media 217

Substituting the relations (11) and (12) into (9) and (10) yield

∞∑

k=0

fk(η) = fw +
1
2
β1η

2 − 1
6Pr

(1 + Ω + M2)η3

+
1
Pr

L−1
1

[
(Ω + M2)

∞∑

k=0

f ′
k +

∞∑

k=0

Ak

]
, (18)

∞∑

k=0

θk(η) = 1 + β2η + L−1
2

(∞∑

k=0

Ek

)
. (19)

Following Adomian [5] and Wazwaz [13], we arrange the respective individual
decompositions of (18) and (19) in recursive relations for k ≥ 0 as,

f0 = fw +
1
2
β1η

2 , (20)

f1 = − 1
6Pr

(1 + Ω + M2)η3 +
1
Pr

L−1
1

[
(Ω + M2)f ′

0 + A0

]
, (21)

fk+2 =
1
Pr

L−1
1

[
(Ω + M2)f ′

k+1 + Ak+1

]
, (22)

θ0 = 1 + β2η , (23)
θk+1 = L−1

2 (Ek) . (24)

In the environment of the computer algebra package Maple, the variable
Digits controlling the number of significant digits in all the calculations is set to
16. The Adomian polynomials (14)–(17) and recursive relations (20)–(24) with
the prescribed values of the parameters involved are coded to generate the first
k terms of fk and θk of the series solutions φk and ωk. We observe that as many
terms as required can be generated within the computer’s memory limitation
and the accuracy improves as more terms in the series are included. So in our
case, with the selected values of the parameters involved, we calculate up to the
39-term approximations of f(η) and θ(η) and denote them by φ39 =

∑38
k=0 fk(η)

and ω39 =
∑38

k=0 θk(η) respectively.
The truncated series solutions φ′

39 and ω39 are transformed into Padé approx-
imants of order [N/N] denoted by φ′

39[N/N] and ω39[N/N] respectively with the
range of N is from 2 to 20. The approximants are matched to the boundary
conditions at the unbounded domain (3) and (4) to determine the skin friction
coefficient f ′′(0) and the heat transfer coefficient θ′(0). We then evaluate the
limη→∞ φ′

39[N/N] = 1 and as N increases, the numerical values of β1 = f ′′(0)
stabilize quickly to a solution within the range of the accuracy needed. The con-
vergence rate differs for every set of parameters values considered due to the
strength of nonlinearity of the resulted differential equations.

The approximation of β2 = θ′(0) is done by substituting β1 = f ′′(0) in ω39 and
following Boyd [20] we solve ω39[N/N] = 0 for some intermediate η. In the neigh-
bourhood of η selected, as N increases, common converged values are observed.
This approach is adopted in order to avoid massive computation in higher order

218 S.A. Kechil and I. Hashim

approximation or failure to match the asymptotic behaviour. We then substitute
the calculated values of f ′′(0) and θ′(0) in the Padé approximants of order [20/20]
to obtain analytical approximations of the exact closed form solutions of the di-
mensionless stream function f(η), velocity function f ′(η) and temperature θ(η).

We summarise the algorithms as follows:

1. Initialize all the parameters.
2. Initialize A0, E0, f0 and θ0.
3. Calculate f1 and θ1.
4. Do loop k = 1 to 37

(a) Calculate the Adomian polynomials Ak and Ek.
(b) Calculate the terms fk+1 and θk+1.
End loop.

5. Summation of fk(η) and θk(η) to obtain the ADM series φ39 and ω39.
6. Differentiate φ39 to obtain φ′

39.
7. Do loop N = 2 to 20

(a) Calculate Padé approximant of order [N/N] of φ′
39.

(b) Solve limη→∞ φ′
39[N/N] = 1.

End Loop.
8. Determine the converged value as a solution to β1.
9. Do loop N = 2 to 20

(a) Calculate Padé approximant of order [N/N] of θ39.
(b) Solve θ39[N/N] = 0 for some intermediate η.
End Loop.

10. Determine the converged value of β2 and calculate the Lanalytical
approximations for f, f ′ and θ by substituting β1 and β2 in φ39[20/20],
φ′

39[20/20] and θ39[20/20].
11. Plot graphs.

The algorithms above are straightforward and can be easily coded in Maple
commands. Besides several applicable numerical techniques such as Runge-Kutta
and the implicit finite-difference schemes of Crank-Nicholson and Keller-box,
another recent analytical method which is based on series expansion and much
more involved is the homotopy analysis method (HAM). HAM is first developed
by Liao [21] and uses base functions to generate series solution together with
choices of homotopy value for a converging series. In ADM [5], the initial func-
tions derived from the initial conditions are used to obtain the series expansion
and the series is treated by Padé approximants to accelerate convergence for the
approximation of the closed form solution.

4 Results and Discussion

From the Maple output lists of 39 terms, for brevity, we list only the first three
general terms of fk and θk as follows,

f0 = fw +
β1

2
η2 , (25)

Symbolic Solution to MHD Hiemenz Flow in Porous Media 219

f1 = − 1
6Pr
(
1 + Ω + M2 + fwβ1

)
η3 +

β1

24Pr
(
Ω + M2

)
η4 +

β2
1

120Pr
η5 , (26)

f2 =
fw

24Pr2
(
fwβ1 + Ω + M2 + 1

)
η4 − 1

120Pr2
[
Ω (Ω + 1)

+M2
(
2Ω + 1 + M2

)
+ 2fwβ1

(
M2 + Ω

)]
η5

+
β1

720Pr2
[
M2
(
M2 + 2Ω − 2

)
− 2 − 3β1fw − 2Ω + Ω2

]
η6

+
β2

1

2520Pr2
(
Ω + M2

)
η7 − β3

1

40320Pr2
η8 , (27)

θ0 = 1 + β2η , (28)

θ1 = −fwβ2

2
η2 +

λβ1

6
η3 +

β1β2

24
(2λ − 1) η4 , (29)

θ2 =
f2

wβ2

6
η3 − λ

24Pr
(
Ω + M2 + fwβ1 + 1 + Prfwβ1

)
η4

+
1

120Pr

[
β2

(
Ω + M2 − 3λ + 1

)
+ λβ1

(
Ω + M2

)

−3λβ2

(
Ω + M2

)
+ fwβ1β2 (4Pr − λ + 1 − 3λ)

]
η5

+
β1

720Pr

[
λβ1 (1 − 6Pr + 4Prλ) + λβ2

(
4M2 + 4Ω

)
− β2

(
M2 + Ω

)]
η6

+
1

5040Pr
β2

1β2

(
10Pr + 10λ2Pr − 25λPr − 1 + 5λ

)
η7 . (30)

In order to verify the accuracy of the ADM and Padé approximation, the
numerical results of f ′′(0) and −θ′(0) or −θ′(0)

√
Pr are tabulated in Tables 1–4

for some prescribed values as representative examples. We compare our results
with those of Lin and Lin [22] and Yih [7]. Table 1 shows the numerical results
of β1 = f ′′(0) for Pr = 1, Ω = 0, M =0, 1, 2, 5, 10 and fw = 1. The values of
β2 = θ′(0) for various M and fw when Pr=1, Ω = 0 and λ = 0 are tabulated in
Table 2. We consider the Prandtl number as unity, Pr = 1 where momentum and
energy transfer by diffusion are comparable. As M increases, convergence can be
seen at the lower order of N and our results and Yih [7] are in well agreement.
We also present the values of f ′′(0) and −θ′(0)

√
Pr from a low Prandtl number

to a high Prandtl number as shown in Tables 3 and 4 respectively and our values
of −θ′(0)

√
Pr agree with those of Lin and Lin [22] and Yih [7].

Table 1. Values of β1 = f ′′(0) at Padé [N/N] for various M when Ω = 0, Pr = 1 and
fw = 1

M [13/13] [17/17] [19/19] [20/20] Yih [7]

0 1.8793745305 1.8972260572 1.8847352359 1.8846843733 1.889314
1 2.2025186785 2.2034463464 2.2027370176 2.2014335458 2.202940
2 2.9201372952 2.9201097536 2.9201142023 2.9201142028 2.920111
5 5.6768303297 5.6768303423 5.6768303422 5.6768303421 5.676830
10 10.5883674769 10.5883674767 10.5883674767 10.5883674767 10.588367

220 S.A. Kechil and I. Hashim

Table 2. Values of −θ′(0) for M = 0, 1, 2 and fw = −1, 0, 1 when λ = Ω = 0 and
Pr = 1

M fw = −1 fw = 0 fw = 1

Yih [7] ADM-Padé Yih [7] ADM-Padé Yih [7] ADM-Padé

0 0.116752 0.11677 0.570465 0.57035 1.323691 1.32368
1 0.140002 0.14000 0.595346 0.59539 1.338060 1.33804
2 0.173124 0.17312 0.634132 0.63418 1.364466 1.36446

Table 3. Values of β1 = f ′′(0) at Padé [N/N] for various Pr when Ω = fw = M = 0

Pr [11/11] [12/12]

0.0001 124.8293627537 124.8297834328
0.001 39.4745105172 39.4746435463
0.01 12.4829362754 12.4829783429
0.1 3.94745105174 3.94746435479
10 0.3947451051 0.3947464354
100 0.1248293627 0.1248297834
1000 0.0394745105 0.0394746435
10000 0.0124829362 0.0124829783

Table 4. Values of −θ′(0)
√

Pr for various Pr when Ω = fw = M = 0

Pr λ = 0 λ = 1

Lin and Lin [22] Yih [7] ADM-Padé Yih [7] ADM-Pad’e

0.01 0.075973 0.075973 0.07573 0.116372 0.11610
0.1 0.219505 0.219503 0.21949 0.324927 0.32400
1 0.570466 0.570465 0.57035 0.811301 0.81164
10 1.33880 1.338796 1.33843 1.861577 1.86149
100 2.98634 2.986329 2.98658 4.115021 4.11576
1000 6.52914 6.529137 6.52976 8.963783 8.96368

fw = 1
fw = 0

M = 2 : fw = −1
fw = 1
fw = 0

M = 0 : fw = −1

η

f
′

3210

1

0.8

0.6

0.4

0.2

0

fw = 1
fw = 0

M = 2 : fw = −1
fw = 1

fw = 0
M = 0 : fw = −1

η

θ

543210

1

0.8

0.6

0.4

0.2

0

Fig. 1. Velocity profiles f ′ and temperature profiles θ for M = 0, 2 and fw = −1, 0, 1
when Ω = λ = 0 and Pr=1

Symbolic Solution to MHD Hiemenz Flow in Porous Media 221

Pr=100
Pr=10
Pr=1

Pr=0.1
Pr=0.01

η

f
′

109876543210

1

0.8

0.6

0.4

0.2

0

Pr=100
Pr=10
Pr=1

Pr=0.1
Pr=0.01

η

θ

76543210

1

0.8

0.6

0.4

0.2

0

Fig. 2. Velocity profiles f ′ and temperature profiles θ for various Pr when M = Ω =
λ = fw = 0

The non-dimensional velocity f ′(η) and temperature θ(η) profiles for various
parameters M, Pr and fw are illustrated in Figs. 1 and 2. Fig. 1 shows the ef-
fects of suction/injection parameter and magnetic parameter M . As M or fw

increases, the velocity profile increases and the thermal boundary layer thick-
ness decreases. The magnetic field has a pronounced effect on the temperature
distribution for injection while its influence can be neglected in the case of suc-
tion. On the effects of suction/injection parameter on the thermal boundary
layers, Fig. 1 shows that the temperature profile decreases as fw increases from
injection to suction and leads to the thinning of the thermal boundary layers.
The temperature decreases due to suction since the fluid ambient temperature
is brought closer to the wall. The heat transfer from the wall into the convect-
ing fluid increases and thus reduces the temperature and the thermal boundary
layer thickness. Injection increases the temperature of the fluid and thickens the
thermal boundary layer. The action of injection pushes the heated fluid farther
from the wall and forms an insulating layer of nearly the same temperature of
the wall which decreases the rate of heat transfer from the wall and leads to
slower cooling.

Fig. 2 illustrates the influence of the Prandtl number Pr. As Pr diminishes,
the velocity profile increases and the temperature profile decreases while lesser
variation can be seen in both velocity and temperature profiles. For low Prandtl
number Pr < 1, the velocity profile moves closer to the wall and the free-stream
velocity exists throughout the boundary layers. These results are therefore less
important for highly ionized gases with low Prandtl numbers but quite significant
for fluids of high Prandtl numbers such as oils.

5 Conclusions

The Adomian decomposition method and Padé approximant are employed to
solve the MHD Hiemenz flow against a flat plate in a porous medium through
symbolic manipulations in the Maple system environment. Developed routines
yield approximate analytical solutions for momentum and thermal boundary lay-
ers and the effects of various influential parameters on the flow are presented. The

222 S.A. Kechil and I. Hashim

numerical results are in well agreement with the existing results and therefore
elucidate the reliability and efficiency of the technique. The integrated applica-
tion of the computer algebra system Maple, the Adomian decomposition method
and the Padé approximant is shown to be a useful and powerful analytical tool
in solving systems of nonlinear differential equations of boundary-layer flows.

Acknowledgements

The authors gratefully acknowledge the financial supports received from the Uni-
versiti Teknologi MARA and the UKM Engineering Mathematics Group.

References

1. Yahaya, F., Hashim, I., Ismail, E.S., Zulkifle, A.K.: Direct Solutions of N-th Or-
der Initial Value Problems in Decomposition Series. Int. J. Nonlinear Sci. Numer.
Simul. 8(3), 385–392 (2007)

2. Li, X.F.: Approximate Solution of Linear Ordinary Differential Equations with
Variable Coefficients. Math. Comput. Simul. 75, 113–125 (2007)

3. Edneral, V.F.: Looking for Periodic Solutions of ODE Systems by the Normal Form
Method. In: Wang, D., Zheng, Z. (eds.) Differential Equations with Symbolic Com-
putations. Trends in Mathematics, pp. 173–200. Birkhäuser Verlag, Basel (2006)

4. Pratibha, J.D.J.: Stokes-Flow Problem Solved Using Maple. In: Sunderam, V.S.,
van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3516,
pp. 667–670. Springer, Heidelberg (2005)

5. Adomian, G.: Solving Frontier Problems of Physics: the Decomposition Method.
Kluwer Academic, Dordrecht (1994)

6. Baker, G.A.: Essentials of Padé Approximants. Academic Press, New York (1975)
7. Yih, K.A.: The Effect of Uniform Suction/Blowing on Heat Transfer of Magnetohy-

drodynamic Hiemenz Flow Through Porous Media. Acta Mechanica 130, 147–158
(1998)

8. Hashim, I.: Comments on A New Algorithm for Solving Classical Blasius Equation
by L. Wang. Appl. Math. Comput. 176, 700–703 (2006)

9. Hashim, I.: Adomian Decomposition Method for Solving BVPs for Fourth-Order
Integro-Differential Equations. J. Comp. Appl. Math. 193, 658–664 (2006)

10. Hashim, I., Noorani, M.S.M., Ahmad, R., Bakar, S.A., Ismail, E.S., Zakaria, A.M.:
Accuracy of the Adomian Decomposition Method Applied to the Lorenz System.
Chaos Solitons Fractals 28, 1149–1158 (2006)

11. Noorani, M.S.M., Hashim, I., Ahmad, R., Bakar, S.A., Ismail, E.S., Zakaria, A.M.:
Comparing Numerical Methods for the Solutions of the Chen System. Chaos, Soli-
tons Fractals 32, 1296–1304 (2007)

12. Zheng, L.C., Chen, X.H., Zhang, X.X., He, J.H.: An Approximately Analytical So-
lution for the Marangoni Convection in an In-Ga-Sb System. Chin. Phys. Lett. 21,
1983–1985 (2004)

13. Wazwaz, A.M.: The Modified Decomposition Method and Padé Approximants for
a Boundary Layer Equation in Unbounded Domain. Appl. Math. Comput. 177,
737–744 (2006)

14. Awang Kechil, S., Hashim, I.: Series Solution for Unsteady Boundary-Layer Flows
Due to Impulsively Stretching Plate. Chin. Phys. Lett. 24, 139–142 (2007)

Symbolic Solution to MHD Hiemenz Flow in Porous Media 223

15. Awang Kechil, S., Hashim, I.: Non-perturbative Solution of Free-Convection
Boundary-Layer Equation by Adomian Decomposition Method. Phys. Lett. A 363,
110–114 (2007)

16. Awang Kechil, S., Hashim, I., Jiet, S.S.: Approximate Analytical Solutions for
a Class of Laminar Boundary-Layer Equations. Chin. Phys. Lett. 24, 1981–1984
(2007)

17. Cherruault, Y.: Convergence of Adomian’s Method. Math. Comput. Model. 14,
83–86 (1990)

18. Cherruault, Y., Adomian, G.: Decomposition Method: A New Proof of Conver-
gence. Math. Comput. Model 18, 103–106 (1993)

19. Hosseini, M.M., Nasabzadeh, H.: On the convergence of Adomian decomposition
method. Appl. Math. Comput. 182, 536–543 (2006)

20. Boyd, J.P.: Padé Approximant Algorithm for Solving Nonlinear Ordinary Differ-
ential Equation Boundary Value Problems on an Unbounded Domain. Comput.
Phys. 11, 299–303 (1997)

21. Liao, S.J.: The Proposed Homotopy Analysis Technique for the Solution of Non-
linear Problems. Ph.D. Thesis, Shanghai Jiao Tong University (1992)

22. Lin, H.T., Lin, L.K.: Similarity Solutions for Laminar Forced Convection Heat
Transfer from Wedges to Fluids of Any Prandtl Number. Int. J. Heat Mass Trans-
fer 30, 1111–1118 (1987)

Local Similarity Solutions for Laminar Boundary

Layer Flow along a Moving Cylinder in a
Parallel Stream

Anuar Ishak1, Roslinda Nazar1,�, and Ioan Pop2

1 School of Mathematical Sciences, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Tel.: +60 3 89213371; Fax: +60 3 89254519
{anuarishak,rmn72my}@yahoo.com

http://www.ukm.my
2 Faculty of Mathematics, University of Cluj , R-3400 Cluj, CP 253, Romania

pop.ioan@yahoo.co.uk

Abstract. The present paper deals with a numerical method to analyze
the axisymmetric boundary layer flow of a viscous and incompressible
fluid along a static or moving cylinder, using local similarity approxima-
tion. Both parallel and reverse moving boundary to the free stream are
considered. Local similarity solutions are obtained to show the effects of
the velocity ratio parameter and the curvature parameter on the surface
shear stress. The numerical results are comparable very well with the
existing results available in the literature for some particular cases of the
present problem. Moreover, the results indicate that dual solutions exist
when the cylinder and the free stream move in opposite directions.

Keywords: Boundary layer, Dual solutions, Local similarity solutions,
Moving cylinder, Numerical solutions.

1 Introduction

The axisymmetric boundary layer flow along static cylinders with constant sur-
face temperature was first considered by Seban and Bond [1], using a pertur-
bation method, while for moving cylinders, it was first studied by Sakiadis [2],
using Karman-Pohlhausen approximate method. The laminar boundary layer
flow and heat transfer along a static and moving cylinders with constant ve-
locity was considered by Lin and Shih [3], who found that this problem does
not admit similarity solution. The similar problem was then extended by the
same authors [4], to vertically moving cylinder in which the buoyancy effects
have to be taken into account. These problems [3,4] are different from those of
linearly stretching cylinder considered by Ishak et al. [5], and a static cylinder in
a moving stream with a linear velocity along the axial direction of the cylinder
considered by Mahmood and Merkin [6] and Ishak et al. [7], who found that the
similarity solutions do exist for those cases.
� Corresponding author.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 224–235, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ukm.my

Local Similarity Solutions for Laminar Boundary Layer Flow 225

The local similarity assumption introduced by Lloyd and Sparrow [8] was used
by Lin and Shih [3,4] to solve the above mentioned problems. This assumption
was also used by Narain and Uberoi [9] to solve the problem of mixed convection
from vertical thin needles in a uniform stream, and by the same authors [10] to
a non-uniform free stream, and found that similarity solutions exist when the
free stream varies like x1/2 for isothermal thin needle, and x2/3 for uniform wall
heat flux needle, where x is the axial coordinate.

Motivated by the above investigations, we present in this paper the local sim-
ilarity solutions for laminar boundary layer flow along a fixed or moving cylinder
in a viscous and incompressible fluid, which moves in the same or opposite direc-
tion to the cylinder. The governing partial differential equation is converted into
ordinary differential equation by the local similarity approximation, before it is
solved numerically by a finite-difference method. The numerical results obtained
are compared with the results available in the literature for two particular cases
of the present problem, namely static cylinder in a moving fluid, and moving
cylinder in a quiescent fluid considered by Lin and Shih [3].

2 Problem Formulation

Consider a steady, axisymmetric boundary layer flow of a viscous and incom-
pressible fluid along a continuously moving cylinder as shown in Fig. 1. It is as-
sumed that the cylinder moves with a constant velocity Uw in a parallel stream
of constant velocity U∞. Both cases when the cylinder and the free stream move
in the same and opposite directions are considered. Under these assumptions
along with the boundary layer approximations, the equations which model the
problem under consideration are

∂

∂x
(ru) +

∂

∂r
(rv) = 0, (1)

u
∂u

∂x
+ v

∂u

∂r
=

ν

r

∂

∂r

(
r
∂u

∂r

)
, (2)

subject to the boundary conditions

Fig. 1. Physical model and coordinate system

226 A. Ishak, R. Nazar, and I. Pop

u = Uw, v = 0 at r = R,

u → U∞ as r → ∞, (3)

where u and v are the velocities in the x and y directions, respectively, ν is the
kinematic viscosity, and R is the radius of the cylinder. This problem does not
admit similarity solutions due to the curvature effect of the cylinder [3]. To solve
the present problem, we define the following dimensionless groups and variables
(cf. [3,4]):

ξ(x) =
4
R

(νx

U

)1/2

, η(x, r) =
r2 − R2

ξR2
, ψ(x, r) = R(νxU)1/2f(ξ, η), (4)

where U = Uw + U∞, and ψ is a stream function such that u = r−1∂ψ/∂r and
v = −r−1∂ψ/∂x which identically satisfy Eq. (1). Using Eq. (4), Eq. (2) becomes

(1 + ξη) f ′′′ + (ξ + f) f ′′ + ξ

(
f ′′ ∂f

∂ξ
− f ′∂f ′

∂ξ

)
= 0, (5)

where primes denote differentiation with respect to η.

3 Solution Procedure

3.1 Local Similarity Assumption

When the value of ξ and (or) the values of ∂f/∂ξ and ∂f ′/∂ξ are small, the terms
containing partial derivatives with respect to ξ in Eq. (5) can be neglected. This
approach is called local similarity assumption [3,4,8]. Thus, the local similarity
solution of Eq. (5) subjected to the appropriate boundary conditions is obtained
by deleting the terms containing partial derivatives with respect to ξ, and con-
siders ξ as a parameter. By employing this assumption, Eq. (5) reduces to

(1 + ξη) f ′′′ + (ξ + f) f ′′ = 0, (6)

and the transformed boundary conditions are

f ′(0) = 2λ, f(0) = 0, f ′(∞) = 2(1 − λ), (7)

where λ = Uw/U . We notice that λ = 0 corresponds to a static cylinder in a
moving fluid, and λ = 1 corresponds to a moving cylinder in a quiescent fluid.
Both cases of λ = 0 and λ = 1 were considered by Lin and Shih [3], for which
the present results can be compared with.

3.2 Finite-Difference Method

To solve the transformed differential equation (6) subject to the boundary
conditions (7), Eq. (6) is first converted into a system of three first-order equa-
tions, and the difference equations are then expressed using central differences.

Local Similarity Solutions for Laminar Boundary Layer Flow 227

For this purpose, we introduce new dependent variables p(η) and q(η) so that
Eq. (6) can be written as

f ′ = p, (8)

p′ = q, (9)

(1 + ξη) q′ + (ξ + f) q = 0. (10)

In terms of the new dependent variables, the boundary conditions (7) are given
by

p(0) = 2λ, f(0) = 0, p(∞) = 2(1 − λ). (11)

We now consider the segment ηj−1ηj , with ηj−1/2 as the midpoint, and is
defined as below:

η0 = 0, ηj = ηj−1 + hj (j = 1, 2, · · · , J), ηJ = η∞, (12)

where hj is the Δη-spacing and j is a sequence number that indicates the coor-
dinate location. The finite-difference approximations to the ordinary differential
equations (8)–(10) are written for the midpoint ηj−1/2 of the segment ηj−1ηj .
This procedure gives

fj − fj−1

hj
=

pj + pj−1

2
= pj−1/2, (13)

pj − pj−1

hj
=

qj + qj−1

2
= qj−1/2, (14)

(
1 + ξηj−1/2

) qj − qj−1

hj
+
(
ξ + fj−1/2

)
qj−1/2 = 0. (15)

Rearranging expressions (13)–(15) give

fj − fj−1 − 1
2
hj (pj + pj−1) = 0, (16)

pj − pj−1 − 1
2
hj (qj + qj−1) = 0, (17)

(1 + ξγ) (qj − qj−1) +
1
2
hjξ(qj + qj−1) +

1
4
hj(fj + fj−1)(qj + qj−1) = 0, (18)

where γ = (ηj + ηj−1)/2 and ()j−1/2 = [()j + ()j−1]/2.
Equations (16)–(18) are imposed for j = 1, 2, 3, · · · , J , and the transformed

boundary layer thickness ηJ is to be sufficiently large so that it is beyond the
edge of the boundary layer. The boundary conditions yield are

f0 = 0, p0 = 2λ, pJ = 2(1 − λ). (19)

228 A. Ishak, R. Nazar, and I. Pop

3.3 Newton’s Method

To solve the nonlinear system (16)–(18), we use Newton’s method, by introducing
the following iterates:

f
(k+1)
j = f

(k)
j + δf

(k)
j , p

(k+1)
j = p

(k)
j + δp

(k)
j , q

(k+1)
j = q

(k)
j + δq

(k)
j , (20)

where k = 0, 1, 2, · · ·. We then insert the left-hand side expressions in place of fj ,
pj and qj in Eqs. (16)–(18) and drop the terms that are quadratic in δf (k), δp(k)

and δq(k). This procedure yields the following linear system (the superscript k
is dropped for simplicity):

δfj − δfj−1 − hj

2
(δpj + δpj−1) = (r1)j−1/2 , (21)

δpj − δpj−1 − hj

2
(δqj + δqj−1) = (r2)j−1/2 , (22)

(a1)δqj + (a2)δqj−1 + (a3)δfj + (a4)δfj−1 = (r3)j−1/2, (23)

where

(a1)j = 1 + ξγ +
1
2
ξhj +

1
2
hjfj−1/2, (a2)j = (a1)j − 2(1 + ξγ)

(a3)j =
1
2
hjqj−1/2, (a4)j = (a3)j , (24)

and

(r1)j−1/2 = −fj + fj−1 + hjpj−1/2, (r2)j−1/2 = −pj + pj−1 + hjqj−1/2,

(r3)j−1/2 = −(1 + ξγ)(qj − qj−1) − ξhjqj−1/2 − hj(fq)j−1/2. (25)

The boundary conditions (19) become

δf0 = 0, δp0 = 0, δpJ = 0, (26)

which express the requirement for the boundary conditions to remain constant
during the iteration process.

3.4 Block-Elimination Method

The linearized difference equations (21)–(23) can be solved by the block-
elimination method as outlined by Na [11] and Cebeci and Bradshaw [12], since
the system has block-tridiagonal structure. Commonly, the block-tridiagonal
structure consists of variables or constants, but here an interesting feature can
be observed that it consists of block matrices. In a matrix-vector form, Eqs.
(21)–(23) can be written as

Aδ = r (27)

Local Similarity Solutions for Laminar Boundary Layer Flow 229

where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[A1] [C1]
[B2] [A2] [C2]

. . .

. . .

. . .
[BJ−1] [AJ−1] [CJ−1]

[BJ] [AJ]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, δ =

⎡

⎢⎢⎢⎢⎢⎣

[δ1]
[δ2]
...

[δJ−1]
[δJ]

⎤

⎥⎥⎥⎥⎥⎦
,

and

r =

⎡

⎢⎢⎢⎢⎢⎣

[r1]
[r2]
...

[rJ−1]
[rJ]

⎤

⎥⎥⎥⎥⎥⎦
.

The elements of the matrices are as follows:

[A1] =

⎡

⎣
0 1 0

− 1
2h1 0 − 1

2h1

(a2)1 (a3)1 (a1)1

⎤

⎦ , (28)

[Aj] =

⎡

⎣
− 1

2hj 1 0
−1 0 − 1

2hj

0 (a3)j (a1)j

⎤

⎦ , 2 ≤ j ≤ J, (29)

[Bj] =

⎡

⎣
0 −1 0
0 0 − 1

2hj

0 (a4)j (a2)j

⎤

⎦ , 2 ≤ j ≤ J, (30)

[Cj] =

⎡

⎣
− 1

2hj 0 0
1 0 0
0 0 0

⎤

⎦ , 1 ≤ j ≤ J − 1, (31)

[δ1] =

⎡

⎣
δq0

δf1

δq1

⎤

⎦ , [δj] =

⎡

⎣
δpj−1

δfj

δqj

⎤

⎦ , 2 ≤ j ≤ J, (32)

and

[rj] =

⎡

⎣
(r1)j−1/2

(r2)j−1/2

(r3)j−1/2

⎤

⎦ , 1 ≤ j ≤ J. (33)

To solve Eq. (27), we assume that A is nonsingular and it can be factorized as

A = LU, (34)

230 A. Ishak, R. Nazar, and I. Pop

where

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

[α1]
[B2] [α2]

. . .

. . . [αJ−1]

[BJ] [αJ]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and U =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

[I] [Γ1]
[I] [Γ2]

. . .

. . .
[I] [ΓJ−1]

[I]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where [I] is a 3 × 3 identity matrix, while [αi] and [Γi] are 3 × 3 matrices in
which the elements are determined by the following equations:

[α1] = [A1] , (35)

[A1] [Γ1] = [C1] , (36)

[αj] = [Aj] − [Bj] [Γj−1] , j = 2, 3, · · · , J, (37)

[αj] [Γj] = [Cj] , j = 2, 3, · · · , J − 1. (38)

Substituting Eq. (34) into Eq. (27), we obtain

LUδ = r. (39)

If we define
Uδ = W, (40)

Eq. (39) becomes
LW = r, (41)

where

W =

⎡

⎢⎢⎢⎢⎢⎣

[W1]
[W2]

...
[WJ−1]
[WJ]

⎤

⎥⎥⎥⎥⎥⎦
,

and [Wj] are 3×1 column matrices. The elements of W can be determined from
Eq. (40) by the following relations:

[α1] [W1] = [r1] , (42)

[αj] [Wj] = [rj] − [Bj] [Wj−1] , 2 ≤ j ≤ J. (43)

When the elements of W have been found, Eq. (40) gives the solution for δ in
which the elements are found from the following relations:

[δJ] = [WJ] , (44)

Local Similarity Solutions for Laminar Boundary Layer Flow 231

[δj] = [Wj] − [Γj] [δj+1] , 1 ≤ j ≤ J − 1. (45)

Once the elements of δ are found, Eqs. (21)–(23) can be used to find the
(k + 1)th iteration in Eq. (20). These calculations are repeated until the conver-
gence criterion is satisfied. In laminar boundary layer calculation, the wall shear
stress parameter q(0) is commonly used as the convergence criterion [13]. This
is probably because in boundary layer calculations, it is found that the greatest
error usually appears in the wall shear stress parameter. Thus, this convergence
criterion is used in the present study. Calculations are stopped when

∣∣∣δq(k)
0

∣∣∣ < ε1, (46)

where ε1 is a small prescribed value. In this study, ε1 = 0.0000001 is used, which
gives about six decimal places accuracy for most predicted quantities.

Table 1. Values of f ′′(0) for the flow along a static cylinder (λ = 0), and a moving
cylinder (λ = 1)

Lin and Shih [3] Present results
ξ λ = 0 λ = 1 λ = 0 λ = 1

0 1.32823 −1.77497 1.328229 −1.774973
0.0001 1.32829 −1.77501 1.328286 −1.775009
0.0005 1.32852 −1.77514 1.328515 −1.775139
0.001 1.32880 −1.77529 1.328801 −1.775292
0.005 1.33108 −1.77654 1.331084 −1.776544
0.01 1.33393 −1.77810 1.333934 −1.778103
0.05 1.35648 −1.79077 1.356475 −1.790768
0.1 1.38449 −1.80622 1.384492 −1.806219
0.5 1.59496 −1.93135 1.594957 −1.931348
1.0 1.83485 −2.10325 1.834846 −2.103250
1.5 2.05683 −2.24323 2.056828 −2.243225
2.0 2.26609 −2.41258 2.266093 −2.412581

It is worth mentioning that the step size Δη in η, and the position of the edge
of the boundary layer η∞ have to be adjusted for different values of parameters
to maintain accuracy. In this study, the values of Δη between 0.001 and 0.1
were used, depending on the values of the parameters used, in order that the
numerical values obtained are independent of Δη chosen, at least to six decimal
places. However, a uniform grid of Δη = 0.001 was found to be satisfactory for
a convergence criterion of 10−7 which gives accuracy to six decimal places, in
nearly all cases. On the other hand, the boundary layer thickness η∞ between
3 and 50 was chosen where the infinity boundary condition is achieved. For
some values of the parameters, there is a possibility that two values of η∞ are
obtained which gives two different velocity profiles, and in consequence produces
two different values of the surface shear stress, as shown in Fig. 2. The existence
of the dual solutions is supported by the nature of the velocity profiles shown
in Fig. 3, where two different profiles are obtained for one value of λ and ξ. To

232 A. Ishak, R. Nazar, and I. Pop

assess the accuracy of the present method, comparisons with previously reported
data by Lin and Shih [3] are made for several particular values of parameters,
as given in Table 1, which shows an excellent agreement.

The present method has second-order accuracy, unconditionally stable and
is easy to be programmed, thus making it highly attractive for production use.
The only disadvantage is the large amount of once-and-for-all algebra needed to
write the difference equations and to set up their solutions [14].

4 Results and Discussion

The exact solution of Eq. (6) subjected to (7) is not available, and thus a nu-
merical method has to be used. We study the effects of the transverse curvature
parameter ξ and the velocity ratio parameter λ on the values of f ′′(0), which
represent the surface shear stress.

Fig. 2 shows that the solution is unique when λ ≥ 0, while dual solutions
are found to exist for certain ranges of λ < 0, i.e. when the cylinder and the
free stream move in the opposite directions. The values of f ′′(0) for the lower
branch solutions for selected values of ξ and λ are given in Table 2. From Fig. 2,
it is seen that the values of f ′′(0) are positives when λ < 0.5, and they become
negatives when the value of λ exceeds 0.5, for both ξ = 0 and ξ = 1. Physically,
positive value of f ′′(0) means that the fluid exerts a drag force on the surface
of the cylinder, and negative value means the opposite. The zero value of f ′′(0)
when λ = 0.5 does not mean separation, but it corresponds to the equal velocity
of the cylinder and the free stream. The results reported by Lin and Shih [3] (as
given in Table 1) are also included in this figure, and they are found to be in
good agreement with the present results.

−1.5 −1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

4

λ

f ′′ (ξ
,0

)

ξ = 0

ξ = 1

Lin and Shih [3]

Fig. 2. Skin friction coefficient f ′′(ξ, 0) as a function of λ when ξ = 0 and ξ = 1

Local Similarity Solutions for Laminar Boundary Layer Flow 233

Table 2. Values of f ′′(0) for the lower branch solutions, for selected values of ξ and λ

ξ λ = −0.5 λ = −0.8 λ = −1

0 0.684124 – –
0.5 0.314326 1.562556 –
1 0.226594 0.857920 1.762304

0 2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

1.5

2

2.5

3

η

f ′ (ξ
,η

)

upper branch

lower branch

ξ = 0

λ = − 0.5

ξ = 1

Fig. 3. Velocity profiles f ′(ξ, η) for ξ = 0 and ξ = 1 when λ = −0.5

For a particular value of ξ, the solution exists up to a certain critical value of
λ, say λc, beyond which the boundary layer approximations breakdown, and thus
no solution is obtained. To get further solution, the full Navier-Stokes equations
have to be solved. The boundary layer separated from the surface at λ = λc.
Based on our computations, λc = −0.5505 and −1.0691 for ξ = 0 and 1, re-
spectively. In contrast with the classical boundary layer theory, the separation
occurs when the skin friction coefficient f ′′(0) > 0, and not at the point of van-
ishing wall-shear, f ′′(0) = 0. This finding is in agreement with those reported by
Schneider [15], Schneider and Wasel [16] and Ishak et al. [17], for the problems of
mixed convection above a horizontal plate with the buoyancy force is taken into
account. Moreover, Sears and Telionis [18] suggested that the name “separation”
should not be given to vanishing wall-shear.

We identify the upper and lower branch solutions in the following discussion
by how they appear in Fig. 2, i.e. the upper branch solution has higher values of
f ′′(0) for given values of ξ and λ than the lower branch solution. It is not possible
to determine which solution would occur in practice since a stability analysis has
not been carried out. However, we expect the upper branch solution to be stable
and physically relevant, whereas the lower branch solution is unstable and not
physically relevant, since it is the only solution for the case λ ≥ 0. The saddle-
node bifurcation at λ = λc corresponds to a change in the (temporal) stability
of the solution and, unless there is a change in stability on the upper branch for

234 A. Ishak, R. Nazar, and I. Pop

λ
= λc, the saddle-node bifurcation gives a change in stability from stable (upper
branch) to unstable (lower branch). Although the lower branch solutions seem
to deprive of physical significance, they are nevertheless of interest so far as the
differential equations are concerned. Similar results may arise in other situations
where the corresponding solutions have more realistic meaning [19,20].

Finally, the velocity profiles presented in Fig. 3 show that the boundary con-
ditions (7) are satisfied, and thus support the numerical results obtained, besides
supporting the dual nature of the solutions when λ = −0.5.

Acknowledgement. The financial supports received from the Universiti Ke-
bangsaan Malaysia (Engineering Mathematics Group) under the Research Uni-
versity grants (UKM-OUP-BTT-25/2007 and UKM-GUP-BTT-07-25-174) are
gratefully acknowledged.

References

1. Seban, R.A., Bond, R.: Skin Friction and Heat Transfer Characteristics of a Lam-
inar Boundary Layer on a Cylinder in Axial Incompressible Flow. J. Aeronaut.
Sci. 18, 671–675 (1951)

2. Sakiadis, B.C.: Boundary Layer Behavior on Continuous Solid Surfaces: III. The
Boundary Layer on a Continuous Cylindrical Surface. A.I.Ch.E. J. 7, 467–472
(1961)

3. Lin, H.-T., Shih, Y.-P.: Laminar Boundary Layer Heat Transfer along Static and
Moving Cylinders. J. Chin. Ins. Eng. 3, 73–79 (1980)

4. Lin, H.-T., Shih, Y.-P.: Buoyancy Effects on the Laminar Boundary Layer Heat
Transfer along Vertically Moving Cylinders. J. Chin. Ins. Eng. 4, 47–51 (1981)

5. Ishak, A., Nazar, R., Pop, I.: Uniform Suction/Blowing Effect on Flow and Heat
Transfer due to a Stretching Cylinder. Appl. Math. Modell. 32, 2059–2066 (2008)

6. Mahmood, T., Merkin, J.H.: Similarity Solutions in Axisymmetric Mixed-
Convection Boundary-Layer Flow. J. Eng. Math. 22, 73–92 (1988)

7. Ishak, A., Nazar, R., Pop, I.: The Effects of Transpiration on the Boundary Layer
Flow and Heat Transfer over a Vertical Slender Cylinder. Int. J. Non-Linear
Mech. 42, 1010–1017 (2007)

8. Lloyd, J.R., Sparrow, E.M.: Combined Forced and Free Convection Flow on Ver-
tical Surfaces. Int. J. Heat Mass Transfer 13, 434–438 (1970)

9. Narain, J.P., Uberoi, M.: Combined Forced and Free-Convection Heat Transfer
from Vertical Thin Needles in a Uniform Stream. Phys. Fluid 15, 1879–1882 (1972)

10. Narain, J.P., Uberoi, M.: Combined Forced and Free-Convection over Thin Needles.
Int. J. Heat Mass Transfer 16, 1505–1512 (1973)

11. Na, T.Y.: Computational Methods in Engineering Boundary Value Problems. Aca-
demic Press, New York (1979)

12. Cebeci, T., Bradshaw, P.: Physical and Computational Aspects of Convective Heat
Transfer. Springer, New York (1988)

13. Cebeci, T., Bradshaw, P.: Momentum Transfer in Boundary Layers. Hemisphere,
Washington (1977)

14. Cebeci, T., Chang, K.C., Bradshaw, P.: Solution of a Hyperbolic System of
Turbulence-Model Equations by the “BOX” Scheme. Comp. Method Appl. Mech.
Eng. 22, 213–227 (1980)

Local Similarity Solutions for Laminar Boundary Layer Flow 235

15. Schneider, W.: A Similarity Solution for Combined Forced and Free Convection
Flow over a Horizontal Plate. Int. J. Heat Mass Transfer 22, 1401–1406 (1979)

16. Schneider, W., Wasel, M.G.: Breakdown of the Boundary-Layer Approximation
for Mixed Convection above a Horizontal Plate. Int. J. Heat Mass Transfer 28,
2307–2313 (1985)

17. Ishak, A., Nazar, R., Pop, I.: The Schneider Problem for a Micropolar Fluid. Fluid
Dyn. Res. 38, 489–502 (2006)

18. Sears, W.R., Teleonis, D.P.: Boundary-Layer Separation in Unsteady Flow. SIAM
J. Appl. Math. 28, 215–235 (1975)

19. Ridha, A.: Aiding Flows Non-Unique Similarity Solutions of Mixed-Convection
Boundary-Layer Equations. J. Appl. Math. Phys (ZAMP) 47, 341–352 (1996)

20. Ridha, A.: Three-Dimensional Mixed Convection Laminar Boundary-Layer near a
Plane of Symmetry. Int. J. Eng. Sci. 34, 659–675 (1996)

An Algorithm for Transforming Regular Chain

into Normal Chain�

Banghe Li and Dingkang Wang

Key Laboratory of Mathematics Mechanization
Academy of Mathematics and Systems Science

Chinese Academy of Sciences
Beijing 100080, China

libh@amss.ac.cn, dwang@mmrc.iss.ac.cn

Abstract. We present an improved algorithm to compute the normal
chain from a given regular chain such that their saturation ideals are the
same. Our algorithm is based on solving a system of linear equations and
the original method computes the resultants of multivariate polynomials.
From the experiments, for the random polynomials, our algorithm is
much more efficient than the original one.

1 Introduction

Characteristic set method has been successfully applied to automatic theorem
proving by Wu [11]. In fact, this method also can be used for solving systems
of polynomial equations. In order to solve a system of polynomial equations,
the polynomial system should be decomposed into chains. Wu himself proposed
an algorithm to compute such decompositions. The regular zeros of the chain
in the decomposition maybe empty and some redundant components may be
introduced by using Wu’s method. Yang introduced regular chain and the regular
zeros of a regular chain should not be empty [12]. Both Yang and Kalbrener
presented algorithms to decompose a system of polynomials into a series of
regular chains such that the zeros of the system of polynomials are the union
of the regular zeros of the regular chains. Efficient algorithms to decompose a
system of polynomials into regular chains have been proposed by Moreno [6] and
Wang [10].

In [3], Gao introduced the concept of p-chain in order to solve systems of
equations of parametric polynomials. To avoid the confusion, we will rename the
p-chain as normal chain in this paper. To compute the normal chain from a given
regular chain, the resultants of multivariate polynomials will be computed and
the computation of resultants will be too costly. In [9], normal chain is introduced
and an algorithm is proposed to compute a normal chain from a chain if it does
not fail. An algorithm to decompose polynomial system into normal chains is
given in [8].

� Partially supported by NKBRPC (2004CB318000) and NSFC (10771206).

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 236–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Algorithm for Transforming Regular Chain into Normal Chain 237

In all the existed algorithms to compute the normal chain from a regular chain,
the computation of polynomial resultant is needed and resultant computation of
polynomials is quite cost.

In this paper, we will present a new algorithm to compute the normal chain
from a regular chain. Our algorithm is based on solving system of linear equa-
tions. It is not needed to compute the resultants of multivariate polynomials in
our algorithm and the experiment results show that our algorithm is much more
efficient than the original one.

After giving some preliminaries in section 2, we will give an algorithm to
compute the inverse of a uni-variable polynomial modulo another uni-variable
polynomial. A table to record the timings for computing the inverses of random
polynomials is given in section 3. An algorithm will be given to compute a normal
chain from a regular chain such that they have the same saturation ideal in section
4. An example to decompose the Lorentz polynomial system into normal chains
will be reported in section 5. The conclusions will be given in the last section.

2 Preliminaries

Let K[u1, · · · , up, y1, · · · , ys] be the polynomial ring with u1, · · · , up, y1, · · · , ys

as indeterminates and coefficients in a field K. Let U = {u1, · · · , up}. Y =
{y1, · · · , ys}. K[u1, · · · , up, y1, · · · , ys] is denoted by K[U, Y]. In this paper, we
always assume that the variable ordering is u1 < · · · < up < y1 < · · · < ys.

Let E be an algebraic closed extension field containing K. For a polynomial set
F, (F) denotes the ideal generated by F over the ring K[U, Y]. Zero(F) denotes
the common zeros in E(p+s) of the polynomials in F. Let D be a polynomial,
Zero(F/D) denotes the common zeros in E(p+s) of the polynomials in F which
are not zeros of D.

For any nonzero polynomial P , the leading variable of P is denoted as vP , the
leading coefficient of P with respect to vP is called the initial of P , denoted by
I(P). We denote deg(P, yi) the degree of P w.r.t. yi.

Let A : A1, · · · , As be a chain and the leading variables of Ai is yi. We will use IA
to denote the product of the initials of the polynomials in A, i.e. IA =

∏s
i=1 I(Ai).

For two univariable polynomials P and Q, the remainder of P divided by
Q w.r.t. y will be denoted by rem(P, Q, y). If P and Q are multivariable poly-
nomials, the psudoremainder of P divided by Q w.r.t. yi will be denoted by
prem(P, Q, yi). For two polynomials P , Q , the Sylvester resultant of P and Q

with respect to yi is denoted by res(P, Q, yi).

Definition 1. Let P be a polynomial, A = A1, · · · , As be a chain with yi as the
leading variable of Ai. Let Rs = P , Ri−1 = res(Ri, Ai, yi) for i = s, · · · , 1. R0 is
called the resultant of P with respect to A, denoted by Res(P ;A).

It is easy to see that R0 is in K[u1, · · · , up]. There are polynomials F , Gi for
i = 1, · · · , s such that

FP +
s∑

i=1

GiAi = Res(P ;A) (1)

238 B. Li and D. Wang

Definition 2. Suppose A is a chain, if ξ ∈ En and ξ ∈ Zero(A/IA), then ξ is
called a regular zero of A.

The regular zeros of a chain maybe empty.
Let A = A1, · · · , As be a chain, the ideal generated by A over K[U, y1, · · · , ys]

will be denoted by (A). Let Ai = A1, · · · , Ai for 1 ≤ i ≤ s, each Ai is also a chain
and the ideal generated by Ai over K[U, y1, · · · , yi] will be denoted by (Ai).

Definition 3. Let A = A1, · · · , As be a chain in K[U, Y] and P be a polynomial
in K[U, Y]. P is said to be invertible w.r.t. A if (A, P) ∩ K[U]
= {0}

If P is invertible w.r.t. A, then there exist Q in K[U, Y] and M
= 0 in K[U] such
that PQ ≡ M mod (A)

An algorithm to test if a polynomial is invertible with respect to a chain is
given in [2]. Procedures to compute the inverse of a polynomial with respect to
a chain are given in [2,5,6].

Definition 4. Let A = A1, · · · , As be a chain. Let Ai = A1, · · · , Ai for i =
1, · · · s. A is a regular chain if s=1 or Res(I(Ai);Ai−1)
= 0 for i = 2, · · · , s.

The regular chain is introduced by Yang et. al. in [12]. The above definition
implies that the regular zeros of a regular chain are not empty.

Definition 5. Let A = A1, · · · , As be a chain and ξ ∈ E(p+s) be a zero of A.
ξ = (ξ1, · · · , ξp, ξp+1, · · · , ξp+s), ξ is called to be a generic regular zero of A if
(ξ1, · · · , ξp) are algebraically independent over K.

The following theorem establishes the relationship between regularity of a chain
and invertibility of its initials.

Theorem 1. Let A = A1, · · · , As be a chain, the following statements are
equivalent:

1. A is a regular chain
2. For i = 1, · · · , s, I(Ai) is invertible w.r.t. A.
3. For any generic regular point ξ, I(Ai)(ξ)
= 0 for i = 1, · · · , s.

Please see [2] or [10] for the proof of the theorem.

Definition 6. A chain A = A1, · · · , As is called a normal chain if I(Ai) is in
K[U] for i = 1, · · · , s.

This definition means that a normal chain must be a regular chain. To compute
the regular zeros of a normal chain is much easier than to compute the regular
zeros of a regular chain. A normal chain is also called a p-chain in Gao and Chou
[3]. Some properties about normal chains have been discussed in Wang [10].

Definition 7. Let A = A1, · · · , As be a chain, the saturation ideal of A, denoted
by (A) : I∞A , is defined as follows

(A) : I∞A = {P |Ik
AP ∈ (A) for some integer k ≥ 0 } (2)

An Algorithm for Transforming Regular Chain into Normal Chain 239

Lemma 1. Let A = A1, · · · , As be a regular chain, let P be a polynomial in
K[U, Y], P ∈ (A) : I∞A if and only if there exist a polynomial L in K[U]\{0}
such that LP ∈ (A).

Please refer [2,5] for the proof.

3 An Algorithm to Compute the Inverse of a Polynomial
Modulo an Ideal

Let P , Q be polynomials in K[x]. If P and Q have no common divisors, there
exist polynomial P ′ and Q′ such that deg(P ′, x) < deg(Q, x), deg(Q′, x) <

deg(P, x) and PP ′ + QQ′ = 1. The extended Euclidean algorithm can compute
out P ′ and Q′. Let d = deg(Q, x), suppose P ′ = ad−1x

d−1 + · · · + a0, from
rem(PP ′−1, Q, x) = 0 , we can get a system of linear equations on the variables
a0, · · · , ad−1. It is easy to solve all the ai for i = 0, · · · , d − 1.

Let’s see a simple example:

P = 4x3 + 8x2 + 7x + 3, Q = 5x4 + 4x3 + 3x2 + 6.
Let P ′ = a3x

3 + a2x
2 + a1x + a0,

rem(PP ′ −1, Q, x) = (− 61
125a3 + 19

25a2 + 24
5 a1 +4a0)x3 +(− 657

125a3 + 3
25a2 + 23

5 a1 +
8a0)x2 + (− 144

25 a3 − 24
5 a2 + 3a1 + 7a0)x + (− 114

125a3 − 144
25 a2 − 24

5 a1 + 3a0 − 1).
If rem(PP ′ − 1, Q, x) = 0, we have

− 61
125a3 + 19

25a2 + 24
5 a1 + 4a0 = 0

− 657
125a3 + 3

25a2 + 23
5 a1 + 8a0 = 0

− 144
25 a3 − 24

5 a2 + 3a1 + 7a0 = 0
− 114

125a3 − 144
25 a2 − 24

5 a1 + 3a0 − 1 = 0

(3)

The solution is a0 = 2194
13255 , a1 = − 1614

13255 , a2 = − 709
79530 , a3 = 2309

15906 . then P ′ =
2309
15906x3 − 709

79530x2 − 1614
13255x+ 2194

13255 . P ′ is the inverse of P modulo the polynomial
Q.

For polynomials P and Q, the following algorithm will compute the inverse
of P modulo Q.

Algorithm 1. InverseModUniVarPol
Input : P ,Q are two polynomials in K[x] which have no common divisors.
Output: P ′ such that PP ′ = 1mod (Q).
d ← deg(Q,x)
P ′ ← ad−1x

d−1 + · · · + a0

r ← rem(PP ′, Q, x)
H ← coeffs(r − 1, x); The set of the coefficients r w.r.t x.
S ← solution of H = 0 for ai for i = 0, · · · , d − 1
P ′ ← subs(S,P ′); substitute the solutions for the ai’s in P ′

return P ′

240 B. Li and D. Wang

Suppose Q = xd +ad−1x
d−1 + · · ·+a0 is a monic polynomial , the companion

matrix of Q is the n × n square matrix

G =

⎛

⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

.
...

0 0 · · · 1 −ad−1

⎞

⎟⎟⎟⎟⎟⎠

To compute the inverse of a polynomial modulo a monic polynomial, we have
the following theorem.

Theorem 2. Suppose P, Q ∈ K[x], Q is monic, and P, Q have no common
divisors. Let G be the companion matrix of Q, P ′ = bd−1x

d−1 + · · ·+ b0, then P ′

is the inverse of P modulo Q, i.e. PP ′ = 1 mod Q if and only if (b0, · · · , bd−1)T

is the solution of P (G)y = (1, 0, · · · , 0)T .

Proof. Let I be the ideal generated by Q in K[x]. K[x]/I can be thought as
a finite dimensional linear vector space over K. {1, x, · · · , xd−1} is a mono-
mial basis of K[x]/I. Mx is a linear map from K[x]/I to itself, Mx is defined
by Mx(F) = xF mod I for any F in K[x]/I. It is easy to check that G is
the matrix representation of Mx on the monomial basis {1, x, · · · , xd−1} . Let
MP (F) = PF mod I, MP is a linear map defined by P on K[x]/I and P (G) is
the matrix representation of MP , hence MP (P ′) = PP ′ = 1 mod I if and only
if (b0, · · · , bd−1)T is the solution of P (G)y = (1, 0, · · · , 0)T .

Another proof of this theorem also can be found in [7].
If P , Q are polynomial in K[U, y1, · · · , yi], we can extend the above algorithm

to find polynomial P ′ in K[U, y1, · · · , yi] and M in K[U, y1, · · · , yi−1] such that
prem(PP ′ − M, Q, yi) = 0.

Algorithm 2. InverseModPol
Input : P ,Q are two polynomials in K[U, y1, · · · , yi] which have no common

divisors.
Output: P ′ ∈ K[U, y1, · · · , yi] and M ∈ K[U, y1, · · · , yi−1] such that

prem(PP ′ − M, Q, yi) = 0.
d ← deg(Q,yi)
P ′ ← ad−1y

d−1
i + · · · + a0

r ← prem(PP ′ − M, Q, yi)
H ← coeffs(r, yi); The set of the coefficients r w.r.t x.
S ← solution of H = 0 for ai for i = 0, · · · , d − 1 and M is considered as a
parameter
P ′ ← subs(S,P ′); substitute the solutions for the ai’s in P ′

M ← denom(P ′); M is the denominator of P ′.
return (P ′, M)

An Algorithm for Transforming Regular Chain into Normal Chain 241

For P , Q are polynomial in K[U, y1, · · · , yi], we know that there exists P ′ and
Q′ in K[U, y1, · · · , yi] and M in K[U, y1, · · · , yi−1] such that P ′P + Q′Q = M .

We have implemented the above algorithm. The following is a table which
records the timings to compute the inverse of a polynomial modulo another
polynomial.

Timings of Computing the Inverse
Number of Total Timings
Variables Degree InverseModPol InverseModPol-SubRes

3 3 0.046 0.040
3 4 0.198 0.311
3 5 0.880 1.608
3 6 4.492 9.917
3 7 23.343 64.644
3 8 119.563 407.158
3 9 587.672 2138.584
4 3 0.145 0.067
4 4 1.728 1.564
4 5 43.377 55.396
4 6 1109.934 1426.564
4 7 19673.498 39052.547

If we apply the above algorithm successively, then we can compute the the
inverse of a polynomial modulo the saturation ideal of a regular chain. Let P

be a polynomial, A = A1, · · · , As ⊂ K[U, Y] be a regular chain, P is invertible
w.r.t. A, then there exist polynomial P ′ ∈ K[U, Y] and M ∈ K[U] such that
PP ′ − M = 0 mod ((A) : I∞A).

The following algorithm will compute the inverse of a polynomial modulo the
saturation ideal of a regular chain.

Algorithm 3. InverseModSat
Input : P is a polynomial in K[U, Y], A = A1, · · · , As is a regular chain

in K[U, Y], yi is the leading variable of Ai for i = 1, · · · , s, P is
invertible w.r.t. A.

Output: P ′ ∈ K[U, Y], M ∈ K[U] such that PP ′ = M mod ((A) : I∞A).
Q ← 1
for i from s to 1 step -1 do

(P ′, M) ← InverseModPol(P, Q, yi)
P ← M

Q ← QP ′
end
P ′ ← Q

M ← P

return (P ′, M)

242 B. Li and D. Wang

4 Transforming Regular Chain into Normal Chain

Let A = A1, · · · , As be a regular chain and Ai = A1, · · · , Ai for i = 1, · · · , s,
let Ii be the initial of Ai, i.e. Ii = I(Ai), I1 ∈ K[U], for i = 2, · · · , s, Ii is
invertible w.r.t. A, then there exist I ′i in K[U, y1, · · · , yi−1], Mi in K[U] such that
prem(IiI

′
i − Mi;Ai−1) = 0. i.e. IiI

′
i = Mi + Ni and Ni ∈ (Ai−1) : I∞Ai−1

. We let
B1 = A1, H1 = 1, and for i = 2, · · · , s, Bi = Miy

ni

i + I ′iRi and Hi = M2 · · ·Mi,
with Ai = Iiy

ni

i + Ri. Let Bi = B1, · · · , Bi.

Theorem 3. For A and B as above, A is a regular chain and B is a normal
chain , we have (A) : I∞A = (B) : I∞B .
Proof. We will prove (Ai) : I∞Ai

= (Bi) : I∞Bi
for i = 1, · · · , s.

(⊂) We will prove (Ai) : I∞Ai
⊂ (Bi) : I∞Bi

by induction on i. It is true for i = 1.
Suppose it is also true for i − 1, we will prove it for i.

For any P ∈ (Ai) : I∞Ai
then there exist a nonzero polynomial Li ∈ K[U]

such that LiP ∈ (Ai) by lemma 1, i.e. there exist polynomial Qi such that
LiP = QiAi mod (Ai−1).

HiLiP = Hi−1MiQiAi mod (Ai−1)
= Hi−1Qi(IiI

′
i − Ni)Ai mod (Ai−1)

= Hi−1Qi(IiBi + Niy
ni

i − NiAi)mod (Ai−1)

By induction, we know that HiLiP is in (Bi) : I∞Bi
. Since Hi, Li ∈ K[U], we know

that P is in (Bi) : I∞Bi
by lemma 1.

(⊃) For any P ∈ (Bi) : I∞Bi
, then there exist a nonzero polynomial Li ∈ K[U]

such that LiP is in (Bi) by lemma 1. From I ′iAi = Bi + Niy
ni

i , we know that
LiP ∈ (Ai) : I∞Ai

. Since Li is in K[U] and Ai is a regular chain, then P is in
(Ai) : I∞Ai

.

Let B′
1 = B1, B′

1 = B1, for i = 2, · · · , s, let B′
i be the remainder of Bi w.r.t B′

i−1

and B′
i = B′

1, · · · , B′
i . Let B′ = B′

s. It is easy to see that B′ is a normal chain
and (B) : I∞B = (B′) : I∞B′ . B′ is called the normalization of A. It is easy to check
that

Zero(B′/IB′) ⊂ Zero(A/IA) ⊂ Zero(A) ⊂ Zero(B′)

According to the above theorem, we have the following algorithm to transform
a regular chain into a normal chain.

From the above theorem, we have

Corollary 1. For a polynomial set F, there is an algorithm to compute a series
of normal chains Bi such that

Zero(F) =
⋃

i

Zero((Bi) : I∞Bi
) (4)

Proof. For a polynomial set F, there are algorithms to compute a series of regular
chains Ai such that

Zero(F) =
⋃

i

Zero((Ai) : I∞Ai
)

An Algorithm for Transforming Regular Chain into Normal Chain 243

Algorithm 4. Reg2Norm
Input : A = A1, · · · , As is a regular chain in K[U,Y], yi is the leading variable

of Ai for i = 1, · · · , s
Output: B = B1, · · · , Bs is a normal chain in K[U,Y] such that

(A) : I∞
A = (B) : I∞

B
Q ← 1
if s=1 then return A
B1 ← A1

for i ← 2 to s do
Ii ← I(Ai)
(I ′

i, Mi) ← InverseModSat(Ii, Ai−1)
ni ← deg(Ai, yi)
Ri ← Ai − Iiy

ni
i

Bi ← Miy
ni
i + I ′

iRi

end
B ← B1

for i ← 2 to s do
B ← B, Reduce(Bi, B)

end
return B

where Ai’s are regular chains. For each Ai, the above algorithm will compute a
normal chain Bi such that (Ai) : I∞Ai

= (Bi) : I∞Bi
, and so

Zero(F) =
⋃

i

Zero((Ai) : I∞Ai
) =
⋃

i

Zero((Bi) : I∞Bi
)

The corollary is proved.
If the polynomial system F is zero dimensional, then we have

Zero(F) =
⋃

i

Zero(Bi)

Corollary 2. For a polynomial set F, there is an algorithm to compute a series
of normal chains Ai such that

Zero(F) =
⋃

i

Zero(Ai/IAi)) (5)

5 Examples

Example 1. Solving the following Lorentz problem:

f1 = x2(x3 − x4) − x1 + c = 0
f2 = x3(x4 − x1) − x2 + c = 0
f3 = x4(x1 − x2) − x3 + c = 0
f4 = x1(x2 − x3) − x4 + c = 0

where x1, x2, x3 and x4 are variables and c is a parameter.

244 B. Li and D. Wang

This problem has been discussed in [3]. In order to solve this system of equa-
tions of parametric polynomials. We will decompose this polynomial system into
normal chains.

Let F = {f1, f2, f3, f4}, for a variable order x4 > x3 > x2 > x1 > c, we have
the zero decomposition

Zero(F) =
9⋃

i=1

Zero(Ai/IAi)

where Ai’s are regular chains.
We can transform the regular chainsAi into normal chainsBi by using algorithm

Reg2Norm such that
⋃9

i=1 Zero(Bi/IBi) ⊂ Zero(F). For this example, we have

Zero(F) =
9⋃

i=1

Zero(Bi/IBi)

where Bi are normal chains. By our new algorithm, it takes 63 seconds to get
the normal chains while the old algorithm will cost 106 seconds.

The following is a table which records the length of the chain and the number
of the terms of the polynomials in the normal chains which are in the decompo-
sition of the Lorentz polynomial system.

The normal chains in the decomposition
normal chains length of the chain number of terms

1 4 2 2 2 2
2 4 1291 1289 410 13
3 5 1 2 1 2 2
4 5 2 2 1 2 3
5 5 2 2 2 2 2
6 5 3 6 7 5 3
7 5 1 2 2 2 3
8 5 9 9 9 5 5
9 5 15 15 15 8 8

6 Conclusions

We give a new algorithm to compute the normal chain from a regular chain such
that their saturation ideals are the same. Our algorithm is based on solving sys-
tem of linear equations and it is much more efficient than the original algorithm
to compute the normalization of a regular chain.

References

1. Aubry, P., Lazard, D., Maza, M.M.: On the Theories of Triangular Sets. J. Symbolic
Computation 28, 105–124 (1999)

2. Bouziane, D., Kandri Rody, A.K., Maarouf, H.: Unmixed-dimensional Decompo-
sition of a Finitely Generated Perfect Differential Ideal. J. Symbolic Computa-
tion. 31, 631–649 (2001)

An Algorithm for Transforming Regular Chain into Normal Chain 245

3. Gao, X.S., Chou, S.C.: Solving parametric algebraic systems. In: Proceedings IS-
SAC 1992, Berkeley, July 27-29, pp. 335–341. Association for Computing Machin-
ery, New York (1992)

4. Kalbrener, M.: A Generalized Euclidean Algorithm for Computing Triangular Rep-
resentations of Algebraic Varieties. J. Symbolic Computation 15, 143–167 (1993)

5. Lazard, D.: A new method for solving algebraic systems of positive demension.
Discrete Appl. Math. 33, 147–160 (1991)

6. Moreno, M.M.: On triangular decompositions of algebraic varieties. In: MEGA
2000, Bath, England (presented, 2000)

7. Pan, V.Y.: Sturctured Matrices and Polynomials. Birkhäuser, Boston (2001)
8. Wang, D.K., Zhang, Y.: An algorithm for decomposing a polynomial system into

normal ascending sets. Science in China, Series A: Mathematics 50(10), 1441–1450
(2007)

9. Wang, D.M.: Some Notes on Algebraic Method for Geometric Theorem Proving
10. Wang, D.M.: Elimination Method. Springer, New York (2001)
11. Wu, W.T.: Basic principles of mechanical theorem proving in elementray geome-

tries. J. Syst. Sci. Math. Sci. 4, 20–235 (1984)
12. Yang, L., Zhang, J.Z.: Search dependency between algebraic equations: An algo-

rithm applied to automated reasoning. Technical Report ICTP/91/6, International
Center For Theoretical Physics, Trieste (1991)

A Modified Van der Waerden Algorithm to

Decompose Algebraic Varieties and
Zero-Dimensional Radical Ideals�

Jia Li and Xiao-Shan Gao

Key Laboratory of Mathematics Mechanization
Institute of Systems Science, AMSS,

Chinese Academy of Sciences,
Beijing 100080, China

{lijia,xgao}@mmrc.iss.ac.cn

Abstract. In this paper, we introduce a modified Van der Waerden
algorithm to decompose a variety into the union of irreducible varieties.
We give an effective representation for irreducible varieties obtained by
the algorithm, which allows us to obtain an irredundant decomposition
easily. We show that in the zero dimensional case, the polynomial systems
for the irreducible varieties obtained in the Van der Waerden algorithm
generate prime ideals. As a consequence, we have an algorithm to de-
compose the radical ideal generated by a finite set of polynomials as
the intersection of prime ideals and the degree of the polynomials in the
computation is bounded by O(dn) where d is the degree of the input
polynomials and n is the number of variables.

Keywords: Algebraic variety, zero dimensional variety, resultant,
irredundant decomposition.

1 Introduction

A fundamental construction in commutative algebra is to decompose a radical
ideal into the intersection of prime ideals. From a geometric viewpoint, this is
equivalent to decomposing an algebraic variety into irreducible varieties. The ge-
ometric version is slightly weaker than the algebraic version, since an irreducible
variety is not necessarily represented by a prime ideal.

In recent years, there appeared a lot of work on this kind of decomposi-
tion algorithms. Algorithms for computing the prime decomposition of radi-
cal ideals have been proposed in [9,10,12,13]. All of these algorithms are based
on the Gröbner basis and have no complexity analysis. Corresponding to the
prime decomposition of radical ideals, algorithms for irreducible decomposition
of varieties are developed in [2,3,5,6,17,18,19]. The method in [6] uses Bezon-
tian matrices. It only gives the generic point of each irreducible variety, but
� Partially supported by a National Key Basic Research Project of China under Grant

No. 2004CB318000.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 246–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Modified Van der Waerden Algorithm to Decompose Algebraic Varieties 247

can not give the generating polynomial systems of these varieties. This method
also needs combinatorial selection of parameters. The algorithms developed in
[2,3] use multivariate resultants. They introduce ε as a perturbed parameter
to obtain a regular system Fε and recover the information about the isolated
roots from the trailing coefficient in ε of the determinant of the Macaulay ma-
trix associated to the system Fε. Another approach is the characteristic set
method [4,5,7,13,14,17,19], which can decompose a variety into the union of
irreducible varieties represented by irreducible ascending chains. Generating
polynomial systems for the irreducible varieties can also be found via Chow form
or Gröbner bases[4,7,17,18]. This approach has a very high worst case complexity.
A characteristic set method with single exponential complexity is given in [14].
This method only decomposes the variety as unmixed ones represented by their
characteristic sets.

In this paper, we give an algorithm to compute the irredundant irreducible vari-
ety decomposition of a given variety defined by the following polynomial equations

f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0. (1)

We give a complexity analysis of this algorithm. We prove that our algorithm also
gives an irredundant prime ideal decomposition of the radical ideal generated by
f1, . . . , fn when this ideal is zero-dimensional.

We use an algorithm developed by B. L. Van der Waerden in [15] (abbr,
VDW algorithm) to decompose the variety generated by (1) into irreducible
varieties. This algorithm computes 2n resultants at most, and the degree of the
polynomials which occur in the computation in any variable is bounded by d4n

where d = maxi∈{1,...,n}{degxi
(f1), . . . , degxi

(fm)}. As a consequence, we obtain
an irreducible decomposition for a variety by computing at most 2n resultants
of polynomials with degrees bounded by d4n

.
We present two major improvements of this algorithm. First, we give an ef-

fective representation for the irreducible varieties obtained by the algorithm.
Using this representation, we can easily decide the inclusion relationship of two
varieties. As a consequence, we may give an irredundant decomposition. Note
that the generating polynomial systems given in the VDW algorithm are not
prime ideals in the general case and deciding the inclusion relationship of two
varieties need compute Gröbner bases without our method. Second, we show
that in the zero-dimensional case, the VDW algorithm gives prime ideals. Com-
bining the ideas from [2] and the result in this paper, we give an algorithm to
decompose the zero-dimensional radical ideal generated by (1) as intersection of
prime ideals and the degree of the polynomials in the computation is bounded
by O(dn).

Comparing to the Gröbner basis method, the computation step of the VDW
algorithm is very “large” in the sense that each step eliminates one variable
in all the polynomials. In the Gröbner basis computation, each step is very
“small”, which only eliminates one monomial. The characteristic set method is
in between: each step decreases the degree of a polynomial. Also note that to
obtain a prime decomposition requires to compute the Gröbner bases for many
times. The VDW algorithm is quite similar to the one in [2]. The difference

248 J. Li and X.-S. Gao

is that the VDW algorithm uses a top-to-down approach in the sense that it
computes the components with higher dimensions first, while the algorithm in
[2] computes components with lower dimension first.

2 Preliminaries

Notations and results needed in this paper are summarized in this section.
In what follows the reader is assumed to be familiar with the basic notions

about characteristic sets for which we refer to [8,19].
Let K be a computable field of characteristic zero, e.g., Q. We use K[x1, . . . ,

xn] or K[x] to denote the ring of polynomials in the indeterminates x1, . . . , xn.
Unless explicitly mentioned otherwise, all polynomials in this paper are in K[x].
Let E be a universal extension field of K, i.e., an algebraically closed field ex-
tension of K which contains sufficiently many independent indeterminates over
K. We will consider zeros of polynomials in the field E.

Let P be a polynomial. The class of P , denoted by class(P), is the largest
p such that some xp actually occurs in P . If P ∈ K, class(P) = 0. A sequence
of polynomials A = A1, . . . , Ap is said to be an ascending chain(asc chain),
or simply, a chain, if either r = 1 and A1
= 0 or 0 < class(Ai) < class(Aj)
for 1 ≤ i < j and Ak is of higher degree than Am for m > k in xnk

where
nk = class(Ak).

Definition 1. The dimension of an irreducible chain A = A1, . . . , Ap is defined
to be dim(A) = n − p which is the number of parameters of A.

Definition 2. A characteristic set (abbr. char set) of an ideal I is a chain A in
I such that for all P ∈ I, prem(P,A) = 0.

Theorem 1. [13,19] If A is an irreducible chain then sat(A) is a prime ideal
with dimension dim(A), and A is a char set of sat(A). Conversely, each char
set of a prime ideal is an irreducible chain.

Lemma 1. [19] Let A be an irreducible ascending chain with parameters u1, . . . ,

uq. If Q is a polynomial not in sat(A), then we can find a P ∈ K[u] such that
P ∈ ideal(A

⋃
{Q}).

An ideal distinct from (1) and (0) is called nontrivial.

Lemma 2. Let A be an irreducible chain with parameters u1, . . . , uq, we can
find an irreducible chain A′ such that sat(A) = sat(A′) and the initials of the
polynomials in A′ are in K[u].

Definition 3. Let I be a nontrivial prime ideal in K[x]. We can divide the x into
two groups, u1, . . . , uq and y1, . . . , yp, p + q = n, such that I∩K[u1, . . . , uq] = ∅,
while, for i = 1, . . . , p, I contains a nonzero polynomial in yi and the u alone.
We call the u a parameter set of I.

A Modified Van der Waerden Algorithm to Decompose Algebraic Varieties 249

Lemma 3. [8] Use the notations as above. Let I be a nontrivial prime ideal in
K[x]. A char set of I under the variable order u1 < . . . < uq < y1 < . . . < yp is
of the form

A = A1(u, y1), A2(u, y1, y2), . . . , Ap(u, y1, . . . , yp) (2)

where Ai is a polynomial involving yi effectively. Conversely, for an irreducible
chain like (2), the u consists of a parameter set of the prime ideal sat(A).

Let f1, f2, . . . , fr be r polynomials in a single variable x of given degrees with
indeterminate coefficients. The resultant system of the polynomials f1, f2, . . . , fr

can be computed in the following way[16].
First, we transform the polynomials f1, f2, . . . , fr into polynomials of the same

degree by multiplying every polynomial fi by xn−ni and (x−1)n−ni respectively
where ni is the degree of fi in x, and n is the greatest of ni. We designate these
new polynomials by g1, g2, . . . , gs.

Next, from g1, g2, . . . , gs, we form the linear combinations

gu = u1g1 + u2g2 + · · · + usgs; gv = v1g1 + v2g2 + · · · + vsgs,

where u, v are indeterminates which are adjoined to the field K.
Finally, let R = resl(gu, gv, x) be the resultant of gu and gv wrt x. If we arrange

R according to the power products of the u and v, and denote the coefficients
by D1, D2, . . . , Dh. Then D1, D2, . . . , Dh are the resultant system of f1, . . . , fr.

Remark 1. If it is known beforehand that the leading coefficient of one of the
polynomials fv, say f1, does not vanish, we may omit the entire preliminary
operation whereby the polynomials fv are transformed into polynomials of the
same degree. Moreover the calculations may then be simplified by forming the
resultant of f1 and v2f2 + v3f3 + . . . + vrfr rather than that of gu and gv.

3 Outline of the VDW Decomposition Algorithm

In this section, we outline the algorithm developed by van der Waerden. The
details of this algorithm can be found in [15]. Suppose that we want to decompose
the zero set of the following polynomial equations

f1(x1, x2, . . . , xn) = 0, f2(x1, x2, . . . , xn) = 0, . . . , fm(x1, x2, . . . , xn) = 0 (3)

into irreducible varieties. Denote this variety by M = Zero(f1, f2, . . . , fm). The
polynomial set {f1, f2, . . . , fm} is called the definition system of M .

To construct this algorithm, we introduce a new variable z as follows

z − u1x1 − . . . − unxn = 0 (4)

where u1, . . . , un are indeterminates.
Now, let us explain the algorithm described in [15] that computes the zero

decomposition of (3) by eliminating the variables successively from xn to x1

in n steps. In the first step, we rename xj and uj in (3),(4) as x
(0)
j and u

(0)
j

respectively, where i=1,. . . ,n. We give a sketch to describe this algorithm:

250 J. Li and X.-S. Gao

VDW Algorithm

P(1) −→ P(2) −→ . . .−→ P(i) −→ . . .−→ P(n)

↓ ↓ ↓ ↓
P̄(1) P̄(2) P̄(i) P̄(n)

↓ ↓ ↓ ↓
g
(1)
j g

(2)
j g

(i)
j g

(n)
j

↓ ↓ ↓ ↓
h(1), l

(1)
j h(2), l

(2)
j h(i), l

(i)
j h(n), l

(n)
j

↓ ↓ ↓ ↓ ↓ ↓ ↓
h

(1)
μk e

(1)
j h

(2)
μk e

(2)
j h

(i)
μk e

(i)
j h

(n)
μk

In the above sketch, P(1) = {(3), (4)}, and P(i) = {l(i−1)
j , e

(i−1)
j }, i = 2, . . . , n.

Now, let us explain the i-th step of above algorithm. To discuss conveniently,
we denote P(i) = {f (i)

1 , . . . , f
(i)
s }, where f

(i)
k ∈ K[u(i−1), x

(i−1)
1 , . . . , x

(i−1)
n−i+1, z]

and at least one f
(i)
k said f

(i)
1 is in K[x(i−1)

1 , . . . , x
(i−1)
n−i+1].

STEP i.1: To avoid the resultant system vanishing identically, we do a linear
transformation:

x(i−1) = Mi−1x(i), u(i−1) = Ni−1u(i)

where x(i) = (x(i)
1 , . . . , x

(i)
n)′,u(i) = (u(i)

1 , . . . , u
(i)
n)′, and

Mi−1 =

�
������������

1 · · · 0 v
(i−1)
1 0 · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 1 v
(i−1)
n−i 0 · · · 0

0 · · · 0 1 0 · · · 0
0 · · · 0 0 1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 1

�
������������

, Ni−1 =

�
������������

1 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 1 0 0 · · · 0

−v
(i−1)
1 · · · −v

(i−1)
n−i 1 0 · · · 0

0 · · · 0 0 1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 1

,

�
������������

(5)

and v
(i−1)
k , k = 1, . . . , n − i are constants in K such that the leading coefficient

of f
(i)
1 (x

(i)
1 +v

(i−1)
1 x

(i)
n−i+1, . . . , x

(i)
n−i+v

(i−1)
n−i , x

(i)
n−i+1) in x

(i)
n−i+1 is a nonzero constant

in K.
After this transformation, z is still a linear form in x(i) and u(i):

z = u
(i)
1 x

(i)
1 + . . . + u(i)

n x(i)
n .

Let P̄(i) to be the set of new polynomials obtained from P(i) by doing the
above transformation.

STEP i.2: Compute {g(i)
j }, the resultant system of the polynomials in P̄(i) wrt

x
(i)
n−i+1.

STEP i.3: Compute h(i), the greatest common factor of all g
(i)
j , which is called

the i-th partial resultant of (3) and l
(i)
j = g

(i)
j /h(i). So l

(i)
j are co-prime.

A Modified Van der Waerden Algorithm to Decompose Algebraic Varieties 251

STEP i.4: To obtain equations only involving x(i), compute the resultant sys-
tem of {l(i)j } wrt z, and arrange them according to the power products of the

u(i), and denote {e(i)
j } to be these coefficients. Since l

(i)
j are co-prime, e

(i)
j do not

vanish identically.

STEP i.5: Factorizing h(i) into irreducible factors in K[u(i), x
(i)
1 , . . . , x

(i)
n−i, z]:

h(i)(u(i), x
(i)
1 , . . . , x

(i)
n−i, z)=Θ(u(i), x

(i)
1 , . . . , x

(i)
n−i)
�
μ

h(i)
μ (u(i), x

(i)
1 , . . . , x

(i)
n−i, z)σµ . (6)

Replacing z by u
(i)
1 x

(i)
1 + . . . + u

(i)
n x

(i)
n in h

(i)
μ , and arranging it according to the

power products of the u(i). Denote {h(i)
μk} to be these coefficients.

Definition 4. u1, . . . , us are different indeterminates. η is said to be indepen-
dent with u1, . . . , us if η ∈ K or η and u1, . . . , us are algebraic independent over
K. (η1, . . . , ηt) is said to be independent with u1, . . . , us if ηi is independent with
u1, . . . , us for all i.

After all the x are eliminated. We obtain a sequence of partial resultants

h(1)(u(1), x
(1)
1 , . . . , x

(1)
n−1, z)=0, . . . , h(n−1)(u(n−1), x

(n−1)
1 , z)=0, h(n)(u(n), z) = 0. (7)

Theorem 2. [15] Assume (η, ζ) to be a solution of (3)∪(4). When the η are
independent with the u, (η, ζ) is a solution of one of the h(i) = 0 in (7).

Theorem 3. [15] Assume ξ1, . . . , ξn−r to be given(constants or variables). Then
every solution of the r-th equation of (7) is of the form

ζ = u
(r)
1 ξ1 + . . . + u(r)

n ξn (8)

where ξk are independent with u
(r)
i and {ξk} is a set of solutions of (3).

Now we consider an irreducible factor h
(i)
μ of h(i). According to Theorem 3, if we

set x
(i)
1 = ξ1, . . . , x

(i)
n−i = ξn−i where ξ1, . . . , ξn−i are indeterminates independent

with the u, then the zeros of h(i)(u(i), x
(i)
1 , . . . , x

(i)
n−i, z) are of the form referred in

(8). So factorizing h
(i)
μ into linear factors in certain extensional field of K(u(i), ξ),

we have
h(i)

μ (u(i), x
(i)
1 , . . . , x

(i)
n−i, z) = γμ

�
ν

(z − u
(i)
1 ξ1 − · · · − u(i)

n ξ(ν)
n) (9)

where different ξ(ν) = {ξ1, . . . , ξn−i, ξ
(ν)
n−i+1, . . . , ξ

(ν)
n−1, ξ

(ν)
n } are conjugate to each

other. Let ξ
(i)
μ = ξ(1). Then ξ is a (n− i)-dimensional point in variety M because

ξ1, . . . , ξn−i are indeterminates and ξn−1+1, . . . , ξn are their algebraic functions.
The set of equations

h
(i)
μ1(x

(i)) = 0, . . . , h(i)
μmµ

(x(i)) = 0. (10)

defines a variety M
(i)
μ with the following property.

Theorem 4. [15] Let M
(i)
μ be the variety defined by the irreducible factors of

the (i)-th partial resultant of M according to (10). Then M
(i)
μ is an irreducible

variety of dimension n − i with ξ
(i)
μ as a generic point. Furthermore, we have

252 J. Li and X.-S. Gao

M =
⋃

i=1,...,n;μ

M i
μ.

We give following example to illustrate this algorithm.

Example 1. Let M = Zero(f1, f2, f3) where f1 = x1x2x3 − x1x
2
2 − x3 − x1 −

x2, f2 = x1x3 − x2
1 − x2 − x3 + x1, and f3 = x2

3 − x2
1 − x2

2.

Let P(1) = {f1, f2, f3, f4 = z−u1x1−u2x2−u3x3}. Since the leading coefficient
of f3 in x2 is nonzero, we will eliminate x2 first. The resultant system of P(1)

wrt x2 is

g
(1)
1 = −5x3

1x3 + 2x4
1x3 − 2x1 + x2

1 + 3x2
1x3 − x5

1 − x3
1 + 3x2

1x2
3 − x3

1x2
3 − x1x3 − 2x1x2

3 + 2x4
1,

g
(1)
2 = x1x3u2 − z + x1u2 + u1x1 − x2

1u2 − x3u2 + u3x3,

g
(1)
3 = −4x2

1x3 + 2x3
1x3 − 2x2

1 + 2x1x3 − x4
1 + 2x1x2

3 + 2x3
1 − x2

1x2
3;

The GCD of g
(1)
1 , g

(1)
2 , g

(1)
3 is h(1) = 1. So l

(1)
1 = g1, l

(1)
2 = g2, l

(1)
3 = g3. The

resultant system of l(1) w.r.t z is

e
(1)
1 = −4x2

1x3 + 2x3
1x3 − 2x2

1 + 2x1x3 − x4
1 + 2x1x

2
3 + 2x3

1 − x2
1x

2
3.

We obtain P(2) = {l(1)1 , l
(1)
2 , l

(1)
3 , e

(1)
1 }. We compute the resultant system P(2)

wrt x1 and obtain the second partial resultant:

h(2) = x3u2 − u3x3 + z.

Substituting z = u1x1 + u2x2 + u3x3 into h(2), we obtain the coefficients of the
power products of the u:

h
(2)
21 = x1, h

(2)
12 = x3 + x2.

Now we obtain an 1-dimensional irreducible variety M
(2)
1 = Zero(h(2)

11 , h
(2)
12).

Continuing our computation, we obtain the third partial resultant

h(3) = 68719476736z(−z + u2 − u3)2(u1 − z − u3)2(3u1 + 4u2 − z + 5u3)

which has four irreducible factors:

h
(3)
1 = z, h

(3)
2 = −z + u2 − u3, h

(3)
3 = u1 − z − u3, h

(3)
4 = 3u1 + 4u2 − z + 5u3.

Substituting z = u1x1 + u2x2 + u3x3 into the above polynomials, we obtain the
coefficients of the power products of the u:

h
(3)
11 = x1, h

(3)
12 = x2, h

(3)
13 = x3;

h
(3)
21 = −x1, h

(3)
22 = −x2 + 1, h

(3)
23 = −x3 − 1;

h
(3)
31 = 1 − x1, h

(3)
32 = −x2, h

(3)
33 = −x3 − 1;

h
(3)
41 = 3 − x1, h

(3)
42 = 4 − x2, h

(3)
43 = −x3 + 5.

We obtain four zero-dimensional irreducible varieties: M (3)
1 =Zero(h(3)

11 , h
(3)
12 , h

(3)
13),

M
(3)
2 =Zero(h

(3)
21 , h

(3)
22 , h

(3)
23), M (3)

3 =Zero(h(3)
31 , h

(3)
32 , h

(3)
33), and M

(3)
4 = Zero(h(3)

41 ,

h
(3)
42 , h

(3)
43). The final decomposition is:

M = M
(2)
1

⋃
M

(3)
1

⋃
M

(3)
2

⋃
M

(3)
3

⋃
M

(3)
4 .

A Modified Van der Waerden Algorithm to Decompose Algebraic Varieties 253

In the following result, we give an estimation for the degrees of the polynomials
in the computation procedure.

Theorem 5. Let (3) define a variety M , and d = maxi∈{1,...,n}{degxi
(f1), . . . ,

degxi
(fm)}. Then, in the VDW Algorithm, the maximal degree in any xi of any

polynomial occurring in the computation is bounded by d4n

.

Proof. The only computation in the algorithm increasing the degree is the com-
putation of the resultant. After computing a resultant wrt xn, the maximal
degree of g

(1)
j in any variable is bounded by d2. So the degree bound of h and lj

is also d2. Similarly, the maximal degree of e
(1)
i is d4. Then the degree bound for

P(1) is d4. Repeat the operation, the degree bound for P(2) is (d4)2 = d8. Finally,
the degree bound of P(n−1) is d4n

. �
As a consequence, we may obtain an irreducible decomposition for a variety by
computing 2n resultants of polynomials with degrees bounded by d4n

.
In the following sections, we will discuss the applications and improvements

of this algorithm.

4 Irredundant Decomposition

In Sect. 3, we know that the VDW algorithm can be used to decompose a variety
into the union of irreducible varieties. In general, this decomposition is redun-
dant. In this section, we will show how to obtain an irredundant decomposition.
In order to do that, we need to remove those varieties M

(i)
μ which are contained

in varieties M
(k)
η with higher dimensions. As suggested in [15], since we know the

basis of M
(i)
μ , the irredundant decomposition can be reached in principle with

the methods such as the characteristic set method [19] or the Groebner basis
method [1]. But to use these general methods needs extra work. We will give a
direct method to find an irredundant decomposition.

Let h
(i)
μ (u(i), x

(i)
1 , . . . , x

(i)
n−i, z) ∈ K[u(i), x

(i)
1 , . . . , x

(i)
n−i, z] be an irreducible fac-

tor of the i-th partial resultant from (6). Introduce the following notations.
H(i)

μ = {h(i)
μ1, . . . , h

(i)
μmµ

}

D(i)
μ = (h(i)

μ1, . . . , h
(i)
μmµ

)

M (i)
μ = V (h(i)

μ1, . . . , h
(i)
μmµ

)

K(i)
μ = (h(i)

μ1, . . . , h
(i)
μmµ

, z − (u(i)
1 x

(i)
1 + . . . + u(i)

n x(i)
n)) (11)

J(i)
μ =

√
D(i)

μ

I(i)μ = (J(i)
μ , z − (u(i)

1 x
(i)
1 + . . . + u(i)

n x(i)
n))

where the h
(i)
μj are from (10). By Theorem 4, we know that J(i)

μ and hence I(i)μ

are prime ideals.
In the following discussion, to simplify the expressions, we still use x, u to

denote x(i), u(i) when we do not need to distinguish x(i), u(i) and x(j), u(j).

254 J. Li and X.-S. Gao

Lemma 4. Use the notations in (11). Under the variable order u < x1 < . . . <

xn−i < z < xn−i+1 < . . . < xn, the ideal I(i)μ has a char set of the form

R
(i)
μ0 = h

(i)
μ (u, x1, . . . , xn−i, z)

R
(i)
μ1 = I

(i)
μ1 (u, x1, . . . , xn−i, z)xn−i+1 + U

(i)
μ1 (u, x1, . . . , xn−i, z)

. . .

R
(i)
μi = I

(i)
μi (u, x1, . . . , xn−i, z)xn + U

(i)
μi (u, x1, . . . , xn−i, z)

(12)

Proof. We know that J(i)
μ is a prime ideal whose parameter set is u, x1, . . . , xn−i.

z − (u1x1 + . . . + unxn) is a polynomial linear in z, so I(i)μ is also a prime ideal
whose parameter set is u, x1, . . . , xn−i. According to Lemma 3, I(i)μ has a char
set A of the form

R
(i)
μ0(u, x1, . . . , xn−i, z),

R
(i)
μ1(u, x1, . . . , xn−i, z, xn−i+1),

. . . ,

R
(i)
μi (u, x1, . . . , xn−i, z, xn−i+1, . . . , xn).

where R
(i)
μ0 contains z and R

(i)
μj contains xn−i+j effectively. Furthermore, I(i)μ =

sat(A). Note that R
(i)
μ0 is an irreducible polynomial in u, x1, . . . , xn−i, z and h

(i)
μ ∈

I(i)μ , so we can assume R
(i)
μ0 = h

(i)
μ (u, x1, . . . , xn−i, z).

Let α1, . . . , αn, τ1, . . . , τn−i, β, τn−i+1, . . . , τn be a generic zero of I(i)μ . So
h

(i)
μ (u, x1, . . . , xn−i, z) vanishes at this generic zero, and hence β = α1τ1 + . . . +

αnτn. Furthermore,
dh(i)

µ

dαj
(α, τ1, . . . , τn−j , β) = ∂h(i)

µ

∂uj
(u, x1, . . . , xn−i, z)

+ xj
∂h(i)

µ

∂z (u, x1, . . . , xn−i, z)|(u,x,z)(α,τ,β) = 0, j = n − i + 1, . . . , n.

That is Bj−n+i = ∂h(i)
µ

∂uj
(u, x1, . . . , xn−i, z)+xj

∂h(i)
µ

∂z (u, x1, . . . , xn−i, z) vanishes at

the generic zero of I(i)μ , j = n−i+1, . . . , n. So Bk, k = 1, . . . , i are in I(i)μ and they

are linear in xn−i+k. Also note that ∂h(i)
µ

∂z (u, x1, . . . , xn−i, z)|(u,x,z)=(α,τ,β)
= 0.
From the definition of irreducible chain, we can choose R

(i)
μk = prem(Bk, h

(i)
μ) as

R
(i)
μk. �

From the above lemma, we know that α1, . . . , αn, τ1, . . . , τn−i, β, τn−i+1, . . . ,

τn given above is a generic zero of ideal I(i)μ . So τ1, . . . , τn is a generic zero
of prime ideal J(i)

μ and a generic point of the corresponding irreducible variety
M

(i)
μ of J(i)

μ .
From Lemma 4, we obtain the following effective representation for the prime

ideal J(i)
μ :

H(i)
μ = {h

(i)
μ1 , . . . , h(i)

μmµ
} and A(i)

μ = R
(i)
μ0 , R

(i)
μ1 , . . . , R

(i)
μi (13)

where R
(i)
μj is from (12). This representation is called effective due to the following

reasons.

A Modified Van der Waerden Algorithm to Decompose Algebraic Varieties 255

Lemma 5. A polynomial g ∈ K[x] is in J(i)
μ if and only if prem(g,A(i)

μ) = 0.

Proof. We need only to prove J(i)
μ = I(i)μ

⋂
K[x]. Obviously, J(i)

μ ⊆ I(i)μ
⋂

K[x]. On

the other hand, assume P ∈ I(i)μ
⋂

K[x]. So P (x(i)) ∈
√

(D(i)
μ , z −

n∑
i=1

u
(i)
i x

(i)
i).

Then there exists an integer r > 0 and polynomials Aj ∈ K[u(i), x(i), z], j =

0, . . . , n such that P (x(i))r =
n∑

j=1

Ajh
(i)
μj + A0(z −

n∑
i=1

u
(i)
i x

(i)
i). Substituting

z =
n∑

i=1

u
(i)
i x

(i)
i into this equation, we obtain P (x)r =

n∑
j=1

Âjh
(i)
μj . That is,

P ∈
√

D(i)
μ = J(i)

μ . So I(i)μ
⋂

K[x] ⊆ J(i)
μ . We prove the lemma. �

As a consequence, we have the following result.

Theorem 6. For i > k, M
(i)
μ ⊂ M

(k)
η if and only if prem(h̃(k)

ηj (x(i)
1 , . . . , x

(i)
n),

A(i)
μ)= 0 for j = 1, . . . , mη, where A(i)

μ is defined in (13) and h̃
(k)
ηj (x(i)

1 , . . . , x
(i)
n)

is obtained by substituting x(k) = Mk · · ·Mi−1x(i) into h
(k)
ηj . As a consequence,

we give an irredundant decomposition of variety M with the VDW algorithm.

Proof. When we consider the including relationship between two varieties, we
need to present them in the same coordinate. Note that

x(k) = Mk · · ·Mi−1x(i)

is the linear transformation between x(i) and x(k).
If prem(h̃(k)

ηj (x(i)
1 , . . . , x

(i)
n),A(i)

μ)=0 for j=1, . . . , mη. According to Lemma 5,

h̃
(k)
ηj ∈ J(i)

μ . So D(k)
η ⊂ J(i)

μ . According to the Hilbert’s Nullstellensatz, M
(i)
μ ⊂

M
(k)
η .
On the other hand, if M

(i)
μ ⊂ M

(k)
η , then J(k)

η ⊂ J(i)
μ . So D(k)

η ⊂ J(k)
η ⊂ J(i)

μ .
According to Lemma 5, prem(h̃(k)

ηj (x(i)
1 , . . . , x

(i)
n),A(i)

μ) = 0. �

From the above theorem, we have a new and more efficient method to decide
the including relationship of irreducible components.

Example 2. Continue Example 1. Compute the irredundant irreducible decom-
position of variety M = Zero(f1, f2, f3). We have computed the irreducible de-
composition of the variety in Example 1. We need only remove those irreducible
varieties which are included in some higher dimensional varieties.

For M
(3)
1 , the ascending chain corresponding to it is A(3)

1 = {z, x3, x1, x2}.
prem(h(2)

11 ,A(3)
1) = 0 and prem(h(2)

12 ,A(3)
1) = 0. So according to Lemma 5 and

Theorem 6, we know M
(3)
1 ⊂ M

(2)
1 .

Similarly, we can decide M
(3)
2 ⊂ M

(2)
1 , M

(3)
3 � M

(2)
1 and M

(3)
4 � M

(2)
1 .

We obtain the following irredundant irreducible decomposition of M :

M = M
(2)
1

⋃
M

(3)
3

⋃
M

(3)
4 .

256 J. Li and X.-S. Gao

5 Decomposing Zero-Dimensional Radical Ideals

In this section, we will show that if the given polynomial system is zero-
dimensional, then we can decompose the radical ideal generated by them as the
intersection of prime ideals with the VDW Algorithm. We also give a modified
algorithm using Macaulay resultant to decompose the zero-dimensional radical
ideals.

5.1 Decomposing Zero-Dimensional Radical Ideals Using VDW
Algorithm

Lemma 6. Use the notations defined in (11) and (13). Then A(i)
μ is a char set

of K(i)
μ .

Proof. Let p = z − (u1x1 + . . . + unxn). Then h
(i)
μ (u, x1, . . . , xn−i, z) = h

(i)
μ (u,

x1, . . . , xn−i, p+u1x1 + . . .+unxn) = h̄
(i)
μ (u, x, p)p+h

(i)
μ (u, x1, . . . , xn−i, u1x1 +

. . . + unxn), where h̄
(i)
μ (u, x, p) is a polynomial in u, x, p. Since p, h(i)

μ(u, x1, . . . , xn−i,u1x1 + . . . + unxn) ∈ K(i)
μ , h

(i)
μ (u, x1, . . . , xn−i, z) is in K(i)

μ .
Use the same method, we have

Bk(u, x1, . . . , xn−i, z, xk+n−i)

= dh(i)
µ

dun−i+k
(u, x1, . . . , xn−i, z)

= dh(i)
µ

dun−i+k
(u, x1, . . . , xn−i, p + u1x1 + . . . + unxn)

= B′
kp + dh(i)

µ

dun−i+k
(u, x1, . . . , xn−i, u1x1 + . . . + unxn).

Let h
(i)
μ (u, x1, . . . , xn−i, u1x1 + . . . + unxn) =

∑s
j=1 h

(i)
μj u

rj,1
1 . . . u

rj,n
n . Then

dh(i)
µ

dun−i+k
(u, x1, . . . , xn−i, u1x1 + . . . + unxn)

=
∑s

j=1 rj,n−i+kh
(i)
μj u

rj,1
1 . . . u

rj,n−i+k−1
n−i+k . . . u

rj,n
n ∈ K(i)

μ .

So R
(i)
μk = prem(Bk, h

(i)
μ) ∈ K(i)

μ . Hence A(i)
μ ⊂ K(i)

μ . K(i)
μ ⊂ I(i)μ , so ∀g ∈ K(i)

μ , we

have prem(g,A(i)
μ) = 0. According to the definition of char sets, A(i)

μ is a char
set of K(i)

μ . �

Theorem 7. Use the notations introduced above. If the ideal D(i)
μ is zero-

dimensional, that is, i = n, then D(n)
μ is prime.

Proof. We need only to prove D(n)
μ = J(n)

μ =
√

D(n)
μ . It is clear that D(n)

μ ⊂ J(n)
μ .

On the other hand, we need to prove J(n)
μ ⊂ D(n)

μ . A(n)
μ is a char set of J(n)

μ

by Lemma 6. According to the proof of Lemma 2, we can get a new char set
Ã

(n)
μ = {R̃(n)

μ0 , R̃
(n)
μ1 , . . . , R̃

(n)
μn } of J(n)

μ where

R̃
(n)
μ0 = R

(n)
μ0 , R̃

(n)
μi = QiR

(n)
μi + (

i−1�
i=0

QkR
(n)
μk xi)(k = 1, . . . , n) (14)

and the initials of R̃
(n)
μi are in K[u].

A Modified Van der Waerden Algorithm to Decompose Algebraic Varieties 257

If g(x) ∈ J(n)
μ ⊂ I(n)

μ , by Lemma 6, there exist Q, a product of the powers of
the initials of polynomials in Ã

(n)
μ , and a chain C0, C1, . . . , Cn ∈ K[u, x, z] such

that

Q(u)g(x) =
n∑

j=0

CjR̃
(n)
μj .

Substituting (14) into the above equation and arranging the right hand poly-
nomial according to R

(n)
μi , we get

Q(u)g(x) = C′
0R

(n)
μ0 +

n∑

j=1

C′
jR

(n)
μj ,

where C′
i ∈ K[u, x, z]. We have R

(n)
μj = prem(Bj , R

(n)
μ0), where Bj are defined in

the proof of Lemma 4. So there exist Qj(u) ∈ K[u], a power of the initial of R
(n)
μ0

and Pj ∈ K[u, x, z] such that
R

(n)
μj = QjBj − PjR

(n)
μ0 (j = 1, . . . , n).

So the above equation becomes

Q(u)g(x) = C′′
0 R

(n)
μ0 +

n∑

j=1

C′′
j Bj

where C′′
i ∈ K[u, x, z]. Replacing z with u1x1 + . . .+unxn in the above equation,

we have

Q(u)g(x) = C′′
0 (u, x)

∑s
j=1 h

(n)
μj u

rj,1
1 . . . u

rj,n
n

+
∑n

i=1(C
′′
i (u, x)

∑s
j=1 rj,n−i+kh

(n)
μj u

rj,1
1 . . . u

rj,n−i+k−1
n−i+k . . . u

rj,n
n).

Substitute u = u0 ∈ K, we have

g(x) =
s∑

j=1

h
(n)
μj (x)Tj(x) ∈ D(n)

μ . �

As a consequence of Theorem 7, we have that if the ideal I generated by (3)
is zero-dimensional, the VDW Algorithm gives a prime decomposition of the
radical ideal

√
I. We write this result as a corollary.

Corollary 1. Let (3) define a zero-dimensional ideal I and D(n)
μ = (h(n)

μ1 (x), . . . ,

h
(n)
μmµ(x)) where h

(n)
μ1 are from (10). Then,

√
I = ∩μD(n)

μ decomposes the radical
ideal

√
I as an intersection of prime ideals.

Corollary 2. Let H(i)
μ be defined in (11). Then the ideal generated by H(i)

μ in
the ring K(x1, . . . , xn−i)[xn−i+1, . . . , xn] is prime.

Proof. Let D̃(i)
μ be the ideal generated by H(i)

μ in the ring K(x1, . . . , xn−i)[xn−i+1,

. . . , xn]. Obviously D̃(i)
μ is a zero-dimensional ideal in K(x1, . . . , xn−i)[xn−i+1,

. . . , xn]. Then the result is a consequence of Theorem 7 �

Unfortunately, Theorem 7 is false when ideal D(i)
μ is not zero-dimensional as

shown by the following example.

258 J. Li and X.-S. Gao

Example 3. f1 = x1 + x2 + x3, f2 = x2
1 + x2

2 + x1x2.

Using the algorithm given in Sect. 3, we obtain the following polynomials:

P(1) = {f1, f2, f3 = z − u1x1 − u2x2},
g
(1)
1 = −x2x1 − x2

1 − x2
2, g

(1)
2 = −z + u1x1 + u2x2 − u3x1 − u3x2,

h(1) = 1,

l
(1)
1 = −x2x1 − x2

1 − x2
2, l

(1)
2 = −z + u1x1 + u2x2 − u3x1 − u3x2,

e
(1)
1 = −x2x1 − x2

1 − x2
2;

P(2) = {l1, l2, e1},
g
(2)
1 = −z2 + 2zu1x1 − zu3x1 − u2

1x
2
1 + u1x

2
1u3 − x1u2z + x2

1u2u1 + x2
1u2u3 −

x2
1u

2
2 − x2

1u
2
3,

h(2) = −z2 + 2zu1x1 − zu3x1 − u2
1x

2
1 + u1x

2
1u3 − x1u2z + x2

1u2u1 + x2
1u2u3 −

x2
1u

2
2 − x2

1u
2
3,

h
(2)
11 = −x2x1 − x2

1 − x2
2, h

(2)
12 = −x1x3 − x2x1 − 2x2x3 + x2

1, h
(2)
13 = −x2

3 −
x1x3 − x2

1.

Let D(2)
1 = (h(2)

11 , h
(2)
12 , h

(2)
13). Although

√
D(2)

1 =
√

(h(2)
11 , h

(2)
12 , h

(2)
13) is prime,

D(2)
1 itself is not a prime ideal. Compute the primary decomposition of D(2)

1 , we
have

D(2)
1 = (x1 +x2+x3, x

2
1 +x2

2+x1x2)∩(2x2x3 +x1x3 +x2x1, x
2
1, x

2
2 +x2x1, x

2
3 +

x1x3).

5.2 Decomposing Zero-Dimensional Radical Ideals Using
Macaulay Resultant

Denote
F = {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)}. (15)

In this subsection we always assume that the ideal generated by the poly-
nomials in F is zero-dimensional. We have m ≥ n. We first consider the case
m = n.

Denote
Fh = {fh

1 (x0, x1, . . . , xn), . . . , fh
n (x0, x1, . . . , xn), fh

n+1(x0, x1, . . . , xn, z)},

where fh
i are the polynomials obtained from fi(denote fn+1 = z −

n∑
i=1

uixi) by

homogenizing them with x0.

Lemma 7. Using the notations given above. Assume V (Fh) is still a zero-
dimensional variety in the projective space, that is the polynomial system Fh has
a finite number of solutions in which x0 = 0. Then we can compute a nonzero
polynomial R(z) ∈ K[u, z] such that all the solutions of Fh vanish this poly-
nomial and any z0 such that R(z0) = 0 can be extended to a solution of Fh.

Proof. Using the method in [11], we can compute the Macaulay resultant of the
polynomial system F w.r.t x1, . . . , xn. Denote it to be R(z). According to the
assumption that both V (F) and V (Fh) are zero-dimensional varieties, we know

A Modified Van der Waerden Algorithm to Decompose Algebraic Varieties 259

that R(z) does not vanish identically. From the properties of resultant, we get
the conclusions of this lemma. �

If < F > is a zero-dimensional radical ideal then R(z) has the same properties
as the n−th partial resultant of (3). So we can compute the prime decomposition
of < F > from R(z) according to method in Sect. 3.

When m > n, denote

f ′
i =

m∑

j=1

cijfj, i = 1, . . . , n,

where cij are random chosen integers. Denote F ′ = {f ′
1(x1, . . . , xn), . . . ,

f ′
n(x1, . . . ,xn)}.

Lemma 8. Using the notations given above, we have

< f1, . . . , fm >=< f ′
1, . . . , f

′
n >

with probability almost 1. As a consequence, V (F) = V (F ′).

Proof. < f ′
1, . . . , f

′
n >⊆< f1, . . . , fm > is obviously valid. Conversely, we prove

that < f1, . . . , fm >⊆< f ′
1, . . . , f

′
n > is correct unless cij are selected to be

zeros of a nonzero linear system. < f1, . . . , fm > is a zero-dimensional ideal,
so it has a Gröbner basis containing n elements. We denote this Gröbner ba-
sis to be G = {g1, . . . , gn}. There exists a unique set of integers {bjk} such
that

fj =
n∑

k=1

bjkgk, j = 1, . . . , n.

Then
f ′

i =
m∑

j=1

n∑

k=1

cijbjkgk.

Denote B to be an m×n matrix whose element in i−th row and j−th column is
bij and C to be an n × m matrix whose element in j−th row and k−th column
are cjk. According to the theory of linear equation systems, if det(CB)
= 0 then
all gk can be uniquely represented by the linear combinations of f ′

1, . . . , f
′
n. That

is unless {cij} is zeros of det(CB) = 0, < g1, . . . , gn >⊆< f ′
1, . . . , f

′
n >. Now we

prove this lemma. �

If m > n, we can use F ′ to compute the Macaulay resultant R(z) and to decom-
pose ideal into the intersection of prime ideas.

Lemma 9. Using notations given above, let f1(x1, x2, . . . , xn), f2(x1, x2, . . . ,

xn),. . . , fm(x1, x2, . . . , xn) define a zero-dimensional variety in the affine space
and f ′

1(x0, x1, x2, . . . , xn),f ′
2(x0, x1, x2,

. . . , xn), . . . , f ′
m(x0, x1, x2, . . . , xn) define a zero-dimensional variety in the

projective space, and d = max{deg(f1), . . . , deg(fm)} where deg(fi) is the total
degree of fi in variables x1, . . . , xn. Then, using Macaulay resultant, the maximal
total degree in x1, . . . , xn of polynomials occurring in the computation is bounded
by d, and the degree of resultant R(z) is bounded by dn.

260 J. Li and X.-S. Gao

Proof. These conclusions are consequences of properties of the Macaulay
resultant [11]. �

Obviously, when the ideal is a zero-dimensional radical ideal, it is more efficient
to use Macaulay resultant than using the VDW algorithm.

We summarize the results in this section as the following result.

Theorem 8. For a zero dimensional polynomial equation system like (15), we
can decompose < F > as the irredundant intersection of prime ideals with prob-
ability one. Also the polynomials occurring in the computation is bounded in
degree by O(dn).

Example 4. f1 = x2
1 + x2

2 + x2
3 − 4, f2 = x2

1 + x2
2 − x2

3 − 2, f3 = (x1 + x2 + x3 −
1)(x1 + x2 − x3 + 2).

The ideal I defined by f1, f2, f3 is a zero-dimensional radical ideal. So we can
compute the prime decomposition of this ideal using Macaulay resulsant.

First introducing the new polynomial:

f0 = z − u1x1 − u2x2 − u3x3.

Then homogenizing f0, f1, f2, f3 with x0 and computing the Macaulay resultant
of the new polynomial system with respect to the variables x0, x1, x2, x3:

h = 16384(3u2
1 + 3u1z + z2 + 3u1u2 + 3u2

2 + 3u2z + 3u3u1 + 2u3z + 3u2u3 + u2
3)

(−3u2
1 + 2z2 + 6u1u2 − 3u2

2 − 4u3z + 2u2
3)

(−u2
1 + u1z + z2 + 3u1u2 + u2z − u2

2 − u3u1 − 2u3z − u2u3 + u2
3)

(u2
1 − 4u1z + 2z2 + 6u1u2 − 4u2z + u2

2 − 4u3u1 + 4u3z − 4u2u3 + 2u2
3).

The resultant h has four irreducible factors containing z, we know that I has
four prime components and they can be computed from

h1 = 3u2
1 + 3u1z + z2 + 3u1u2 + 3u2

2 + 3u2z + 3u3u1 + 2u3z + 3u2u3 + u2
3,

h2 = −3u2
1 + 2z2 + 6u1u2 − 3u2

2 − 4u3z + 2u2
3,

h3 = −u2
1 + u1z + z2 + 3u1u2 + u2z − u2

2 − u3u1 − 2u3z − u2u3 + u2
3,

h4 = u2
1 − 4u1z + 2z2 + 6u1u2 − 4u2z + u2

2 − 4u3u1 + 4u3z − 4u2u3 + 2u2
3.

Substituting z = u1x1 + u2x2 + u3x3 into above polynomials and arranging
them according to the power products of the u, we get four zero-dimensional
prime ideals:

I1 =< h11, h12, h13, h14, h15, h16 >, I2 =< h21, h22, h23, h24, h25, h26 >,
I3 =< h31, h32, h33, h34, h35, h36 >, I4 =< h41, h42, h43, h44, h45, h46 > .

where
h11 = 2x1 + 3 + 3x3 + 2x1x3, h12 = 2x1x2 + 3x1 + 3x2 + 3, h13 = 3x1 + 3 + x2

1,
h14 = 2x2 + 3 + 3x3 + 2x2x3, h15 = 3x2 + x2

2 + 3, h16 = x2
3 + 2x3 + 1;

h21 = −4x1 + 4x1x3, h22 = 4x1x2 + 6, h23 = −3 + 2x2
1,

h24 = −4x2 + 4x2x3, h25 = 2x2
2 − 3, h26 = 2x2

3 − 4x3 + 2;
h31 = −2x1 − 1 + x3 + 2x1x3, h32 = 2x1x2 + x1 + 3 + x2, h33 = −1 + x1 + x2

1,
h34 = x3 + 2x2x3 − 2x2 − 1, h35 = −1 + x2 + x2

2, h36 = x2
3 − 2x3 + 1;

h41 = 4x1 − 4 − 4x3 + 4x1x3, h42 = 4x1x2 − 4x1 + 6 − 4x2, h43 = 1 − 4x1 + 2x2
1,

h44 = −4x3 + 4x2x3 + 4x2 − 4, h45 = 1 − 4x2 + 2x2
2, h46 = 2x2

3 + 4x3 + 2.

A Modified Van der Waerden Algorithm to Decompose Algebraic Varieties 261

Then we get the prime decomposition of given ideal:

I = I1

⋃
I2

⋃
I3

⋃
I4.

6 Conclusions

In this article, we introduce the WDW algorithm, and use this algorithm to solve
two problems:

1. The irredundant irreducible decomposition of varieties.
2. The prime decomposition of zero-dimensional radical ideals.

We also give the complexity of this algorithm.

References

1. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory.
In: Bose, N.K. (ed.) Recent Trends in Multidimensional Systems theory,
D.Reidel Publ. Comp. (1985)

2. Canny, J.: Generalised characteristics polynomials. Journal of Symbolic Computa-
tion 9, 241–250 (1990)

3. Chistov, A.: Algorithm of polynomial complexity for factoring polynomials and
finding the components of varieties in subexponential time. J. Sov. Math. 4,
1838–1882 (1986)

4. Chou, S.C.: Mechanical geometry theorem proving. D.Reidel Publishing Company,
Dordrecht (1988)

5. Chou, S.C., Gao, X.S.: Ritt-Wu’s decomposition algorithm and geometry theorem
proving. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 207–220. Springer,
Heidelberg (1990)

6. Elkadi, M., Mourrain, B.: A new algorithm for the geometric decomposition of
a variety. In: Proc. of ISSAC 1999, pp. 9–16. ACM Press, New York (1999)

7. Gao, X.S., Chou, S.C.: On the dimension for arbitrary ascending chains. Chinese
Bull. of Scis. 38, 396–399 (1993)

8. Gao, X.S., Chou, S.C.: On the theory of resolvents and its applications. Systems
Science and Mathematical Sciences 12, 17–30 (1999)

9. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of
polynomial ideals. Journal of Symbolic Computation 6, 149–167 (1988)

10. Laplagne, S.: An algorithm for the computation of the radical of an ideal. In:
Proc. of ISSAC 2006, pp. 191–195. ACM Press, New York (2006)

11. Macaulay, F.S.: The algebraic theory of modular systems. Cambridge University
Press, Cambridge (1916)

12. Sausse, A.: A new approach to primary decompositon. Journal of Symbolic
Computation 31, 243–257 (2001)

13. Ritt, J.F.: Differential algebra, American Mathematical Society
(1950)

14. Szántó, Á.: Computation with polynomial systems, PhD thesis, Cornell University
(1999)

15. Van der Waerden, B.L.: Einfürung in die algebraischen geometrie. Springer, Berlin
(1973)

262 J. Li and X.-S. Gao

16. Van der Waerden, B.L.: Modern algebra II. Frederick Ungar Pub., New York
(1953)

17. Wang, D.M.: Irreducible decomposition of algebraic varieties via characteristic
sets and Gröbner bases. Computer Aided Geometric Design 9, 471–484 (1992)

18. Wang, D.M.: Decomposing algebraic varieties. In: Wang, D., Yang, L., Gao, X.-S.
(eds.) ADG 1998. LNCS (LNAI), vol. 1669, pp. 180–206. Springer, Heidelberg
(1999)

19. Wu, W.T.: Basic principles of mechanical theorem-proving in elementary
geometries. Journal of System Science and Mathematical Sciences 4, 207–235
(1984); Re-published in Journal of Automated Reasoning 2, 221–252 (1986)

Regular Decompositions

Guillaume Moroz

INRIA, Paris-Rocquencourt Center, SALSA Project
UPMC, Univ Paris 06, LIP6, CNRS, UMR 7606, LIP6

UFR Ingéniérie 919, LIP6 Passy-Kennedy, Case 169, 4, Place Jussieu, F-75252 Paris
guillaume.moroz@lip6.fr

Abstract. We introduce the notion of regular decomposition of an ideal
and present a first algorithm to compute it. Designed to avoid generic per-
turbations and eliminations of variables, our algorithm seems to have a
good behaviour with respect to the sparsity of the input system. Beside,
the properties of the regular decompositions allow us to deduce new algo-
rithms for the computation of the radical and the weak equidimensional
decomposition of an ideal. A first implementation shows promising results.

1 Introduction

Let R be a Cohen-Macaulay ring and I an ideal of R. A fundamental problem is to
describe geometrically I. Such a description is given by a decomposing the ideal.

Main Result

We present a new kind of decomposition, so called strict regular decomposition
or SRD. To that end, we introduce in section 2 the notion of regular set. The
main idea is to decompose I in sequences regular in specific extensions of R.

We present properties verified by regular decompositions. In particular it is
easy to compute an equidimensional decomposition from an SRD of I. And in
the case where R is a polynomial ring whose coefficient field has a characteristic
0, we show how to obtain the radical of I from its SRD.

The main motivations for SRDs are their computation facilities. Indeed it
is possible to obtain an SRD of I without using random perturbations of its
generators or variables. Moreover, we present an algorithm avoiding eliminations
of variables which can sometime be time consuming. The method is essentially
based on saturations of an ideal by a polynomial. A first implementation in
the computer algebra system Singular confirms the good behaviour of the
algorithm on various systems in comparison of other decomposition methods.

State of the Art

The methods using regular sequences for describing an ideal go back to Bertini [1].
He proved that in characteristic 0, if c is the codimension of I and S a
sequence of c generic combinations of the generators, then S is a regular sequence

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 263–277, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

264 G. Moroz

on R. In this case, Eisenbud, Huneke and Vasconcelos show in [2] how to compute
the radical of the equidimensional hull of I, using a quotient with the Jacobian
ideal of S. However, they point out that the random combinations spoils the spar-
sity of the input. The negative impact on the computation leads them to exhibit
another algorithm avoiding random combinations. With this in mind, our SRDs
are computed without any generic combinations of the generators of I.

Another tool using regular sequences are the triangular sets. Following the work
of Ritt, Wu introduced first triangular sets in [3]. Then Lazard in [4] and Kalk-
brener in [5] independently enriched this notion. On overview of these methods
and others may be found in [6] and more recent developments are in [7] and [8]
among others. A triangular set is a sequence of polynomial p1, . . . , pk regular in
an extension R, with the strong condition that pi is a polynomial in the i first
independent variables of the polynomial ring. They are usually computed incre-
mentally, without generic perturbations. Our notion of regular sets may be seen
as an extension of the triangular sets, where we only keep the regularity condition.
In particular the main difference is that we don’t directly eliminate variables while
computing regular sets, nor rely on a particular global variable ordering.

In [9], G.Lecerf introduces a different approach and computes equidimensional
decompositions by mean of Kronecker parametrizations, which are more struc-
tured than triangular sets. His algorithm is also incremental. For each new gen-
erator of the ideal, the already computed parametrization is split if necessary
and updated. For the computation of the SRD, we use the same incremental
strategy using less structured mathematical object. Our main problem is the
design of an efficient splitting function.

Let’s also mention the work of [10] and later [11] who developed methods
based on block order Gröbner basis to compute prime and equidimensional de-
compositions of an ideal. Following their work, S.Laplagne presents in [12] a
method to avoid redundancies appearing during the computations. We see in
section 5 that this method can also remove the redundancies in SRDs.

More generally, Kalkbrener presents in [13] a theoretical framework to describe
a decomposition algorithm, a key tool being the Split function. One of the main
contribution of this article is a new way to handle the Split step.

2 Regular Set

In this article, K will always denote a field and R a Cohen-Macaulay ring.
First, we introduce the notion of regular set, which is mainly a sequence

regular on an extension of R. General definitions of Cohen-Macaulay rings and
regular sequences may be found in [14].

Notation 1

– Let E be a multiplicatively closed set in the ring R. We denote by E−1R the
ring of fractions of the form r/e, with r ∈ R and e ∈ E, equipped with the
usual operations on the fractions.

Regular Decompositions 265

– Let F be a subset of the ring R. We denote by F̃ the multiplicative closure
of F in R.

F̃ = {fn1
1 · · · fnk

k |k ≥ 1, n1 ≥ 0, . . . , nk ≥ 0, f1 ∈ F, . . . , fk ∈ F}
– If I is an ideal of K[X1, . . . , Xn], it is customary to write the zero set of I

in Kn
c as V(I), where Kc is the algebraic closure of K.

– If V is a set of Kn
c , then V denotes its Zariski closure. �

Definition 1. (Regular sets)
Let R be a Cohen-Macaulay ring. Let S be the sequence s1, . . . , sk of k polyno-
mials in R and F a finite subset of R.

The pair (S, F) is called a regular set if S is a regular sequence in F̃−1R.

Definition 2. (Regular sets notions)
We call saturated ideal of (S, F) and denote by I(S, F) the ideal

〈S〉 :
∏

f∈F

f
∞

If R is a polynomial ring over K, then:
We call algebraic zeros of (S, F) and denote by Z(S, F) the variety

V(S) \
⋃

f∈F

V(F)

We call constructible zeros of (S, F) and denote by C(S, F) the variety

V(S) \
⋃

f∈F

V(F)

The number of polynomials in the sequence S will be called the height of (S, F),
and the total degree of the variety Z(S, F) will be referred to as the degree of
(S, F).

We can now define the main notion of this article.

Definition 3. (Regular decomposition) Let I be an ideal of R. If there exist k
regular sets (Si, Fi), 1 ≤ i ≤ k such that:

√
I =

k⋂

i=1

√
I(Si, Fi)

or equivalently when R is a polynomial ring such that:

V(I) =
k⋃

i=1

Z(Si, Fi)

then the set of pairs (Si, Fi) is called regular decomposition of I.
Moreover, if the constructible zeros C(Si, Fi) are pairwise disjoint, the regular

sets are said to form a strict regular decomposition also called SRD of I.

In section 4, we prove that such a decomposition always exists by exhibiting an
algorithm computing an SRD of any ideal.

266 G. Moroz

3 Applications

In this section, we present some useful properties of the regular decomposition.

Property 1. (Equi-dimensional)
Let (S, F) be a regular set. Then I(S, F), the saturated ideal of (S, F), is equidi-
mensional and its codimension is the number of polynomials of the sequence S.

Thus the height of (S, F) equals the codimension of I(S, F).

This result is deduced from the properties of the regular sequences. As a corollary,
given D an SRD of an ideal I, the set of the I(S, F) for (S, F) ∈ D is a weak
equidimensional decomposition of I.

Property 2. (Radical computation)
Let R be a polynomial ring K[X1, . . . , Xn] and K a field of characteristic 0. Let
(S, f) be a regular set of height k of R and J be the Jacobian ideal generated
by the k × k minors of the Jacobian matrix of S. Then, the ideal

I(S, F) : J

is the radical of I(S, F).

Remark 1. We remind that in the general case, the lemma is wrong. For example,
let I be the ideal generated by X2, Y 2 and XY in Q[X, Y].I is 0-dimensional
and its Jacobian matrix M is:

⎡

⎣
2X 0
0 2Y
Y X

⎤

⎦

The Jacobian ideal J is generated by the 2 × 2 minors of M : 4XY , 2X2 and
−2Y 2. Thus I : J is the trivial ideal generated by 1 while the radical of I is
generated by X and Y .

Proof. Since R is regular in F̃−1R, I(S, F) is generically in complete intersection.
Hence the theorem 2.1 of [2] allows us to conclude.

This lemma allows to transform an SRD in the radical of an ideal I.
Now let’s see how to construct such a strict regular decomposition.

4 Algorithm

As we recalled in the introduction, different methods exist to decompose an ideal
I. Here we propose a new method based on saturations, involving no generic
transformation, and no elimination of the input variables.

Our base algorithm handles incrementally the polynomials of the input. We
do not need a global variable ordering. We assume that we know how to saturate,
compute the dimension and test the radical membership of any ideal in R.

Regular Decompositions 267

When R is a polynomial ring, these operations can be done by linear algebra
methods in polynomial space ([15]) or by gröbner bases computations. The table
1 in the last section shows that in practice, using gröbner bases is not necessarily
expensive, and usually cheaper than the worst theoretical exponential space case.

4.1 Main Idea of the Algorithm

Let g1, . . . , gm be a list of generators of I. At each step we compute a strict
regular decomposition of 〈g1, . . . , gc〉 based on a strict regular decomposition of
〈g1, . . . , gc−1〉.

We begin with a simple regular set defined as the pair of the sequence (g1)
and the empty set. This regular set forms trivially a regular decomposition of
the ideal 〈g1〉.

At step c, let Dc−1 be a strict regular decomposition of 〈g1, . . . , gc−1〉. For
(S, F) ∈ Dc−1, let JSF be the ideal generated by S and gc, and saturated by the
polynomials in F :

JSF = (〈S〉 + 〈gc〉) :
∏

f∈F

f
∞

The incremental step consists in computing SRDs of the ideals JSF for all
(S, F) ∈ Dc−1, such that their union forms a new strict regular decomposition
Dc of 〈g1, . . . , gc〉.

4.2 Recursion Step

Main case distinction

Let (S, F) be a regular set, p a polynomial, and JSF the ideal defined as:

JSF = (〈S〉 + 〈p〉) :
∏

f∈F

f
∞

Moreover, let R′ be the ring of fraction F̃−1R, and M be the quotient R′−
module R′/SR′.

Now we want to compute a strict regular decomposition of JSF , so we need
to consider two cases:
– p is a nonzerodivisor on M .
– p is a zerodivisor on M

The first case is the easy one. The sequence S′ = S, p is regular on R′, such
that (S′, F) is a regular set. And the algebraic zeros of (S′, F) trivially equal the
zeros of JSF , such that (S′, F) forms an SRD of JSF .

In the second case, we split JSF in two regular sets. The idea is to compute a
polynomial h ∈ I(S, F) : p∞ such that p + h is a nonzerodivisor on M . We will
see in the next section that such a h exists and how to construct it. Then :

(S, F ∪ {h}) and ((S, h), F)

are two regular sets. And we will prove that their constructible zeros are disjoint
and the union of their algebraic zeros is exactly V(JSF).

268 G. Moroz

Split Algorithm

We need some preparatory lemmas.

Lemma 1. Let R be a Cohen-Macaulay ring, and I an ideal generated by a
regular sequence in R. Let p be a zerodivisor on the quotient module R/IR.

Then I : p∞ is not included in
√

I.

Remark 2. Note that if R is a Cohen-Macaulay ring and F is a multiplicatively
closed set, then F−1R is also a Macaulay ring [16].

Proof. I being generated by a regular sequence, its associated primes ass(I) are
isolated and ass(I) = ass(

√
I). Moreover, p is a zerodivisor on R/IR and is thus

contained in an associated prime P of I. In particular, I : p∞ is not included in
P , neither in

√
I.

Lemma 2. Let I be an ideal and p, q two polynomials of a polynomial ring such
that pq ∈

√
I.

Then, the following equality holds:
√

I + 〈p, q〉 =
√

I + 〈p + q〉.

Proof. The inclusion from left to right is obvious. For he other side, we remark
that pq, p(p + q) and q(p + q) belongs to

√
I + 〈p + q〉, and thus p2 and q2 too,

which achieves the proof.

Geometrically speaking, this means that if V(I) ⊂ V(p)∪V(q), then V(I)∩V(p)∩
V(q) = V(I) ∩ V(p + q). This is the key tool that will allow us to get a regular
sequence without using a full random combination of the generators.

Our split algorithm is the main part of the recursive step. Given a regular set
(S, F) and a polynomial p, let I be the ideal generated by S in R′ := F̃−1R.
The following algorithm computes a polynomial h ∈ I : p∞ such that p + h is a
nonzerodivisor on R′/IR′.

Algorithm 1 (Split)
Input: a regular set (S, F) and a polynomial p in a ring R

(R′:=F̃−1R and I is the ideal generated by S in R′)
Output: a polynomial h in I(S, F) : p∞

such that p + h is a nonzerodivisor on R′/SR′

– h:=0
– while p + h is a zerodivisor on R′/IR′

do

- J :=I : (p + h)∞

- choose g ∈
(
J \

√
I
)

∩ R

- h:=h + g
– done

– return h �

Remark 3

– p+h is a zerodivisor on R′/IR′ if and only if the height of I + 〈p + h〉 equals
the height of (S, F), which allows us to test this condition by computing the
dimension of an ideal.

Regular Decompositions 269

– The operation Choose consists in testing if the generators of J belongs to√
I until we find one outside

√
I.

– Note that we do not need to compute fully J . The saturation of I by p + h
may be stopped as soon as we get a polynomial g which does not belong to√

I.
– The number of iteration of the loop is bounded by the number of primes

associated to I, as proven in the following proof of correctness,

Proof. of correctness For the correctness of this algorithm, we need to prove
that h is actually in I(S, F) : p∞, and that the algorithm will eventually stop.

The first assertion comes from the fact that J is always included in I : p∞.
Indeed, let h ∈ I : p∞, then if x ∈ I : (p+h)∞, it is easy to check that x ∈ I : p∞,
such that J ⊂ I : p∞. Thus if h ∈ I : p∞ then g + h also belongs to I : p∞

which allows us to conclude by recurrence that the returned polynomial is in
I : p∞ ∩ R = I(S, F) : p∞.

To prove the termination of the algorithm we use the associated primes of I,
denoted by ass(I). More precisely, if p + h is a zerodivisor on I, let k be the
number of primes containing p + h. We write

ass(I) = {P1, . . . , Pk, Q1, . . . , Qs}

such that p + h ∈
⋂k

i=1 Pi and I : (p + h)∞ ⊂
⋂s

i=1 Qi .
As in the algorithm, let g ∈ I : (p + h)∞ be a polynomial such that g /∈

√
I.

We show that in this case p + h + g is contained at most in k − 1 associated
primes of I. For all 1 ≤ i ≤ s,

g ∈ Qi, p + h /∈ Qi =⇒ p + h + g /∈ Qi

Beside, since g /∈
√

I there exists 1 ≤ i0 ≤ k such that g /∈ Pi0 .This implies that
p + h + g /∈ Pi0 and may only be included in at most k − 1 primes of I.

By recurrence, we see that the number of associated primes of I containing
p + h decreases strictly at each loop until it reaches zero, in which case p + h is
a nonzerodivisor on R′/IR′ and the computation stops.

Now let’s come back to our main algorithm.

Lemma 3. Let (S, F) be a regular set. Using the notations of the beginning
of section 4.2, let p be a polynomial of R zerodivisor on R′/IR′, and h be the
polynomial returned by the Split algorithm.

Then {(S, F ∪ {h}), ((S, p + h), F)} is a strict regular decomposition of JSF .

Proof. To prove that the two regular sets form a regular decomposition of JSF ,
it is sufficient to prove that the following equality holds in R′,

√
I + 〈p〉 =

√
I : h∞ ∩

√
I + 〈p + h〉

Since h ∈ I : p∞, ph ∈
√

I and the lemma 2 allows us to conclude that√
I + 〈p + h〉 =

√
I + 〈p, h〉. Beside, p ∈

√
I : h∞. Thus, we have

√
I + 〈p〉 ⊂

270 G. Moroz

√
I : h∞∩

√
I + 〈p + h〉. For the other inclusion, let x ∈

√
I : h∞∩

√
I + 〈p + h〉.

Then there exists q ∈ I,r ∈ R′ and integers k, l such that
{

xk = q + r(p + h)
hlxk ∈ I

Thus we have hlr(p + h) ∈ I, and in particular, hr ∈
√

I + 〈p〉. This allows us
to conclude that x ∈

√
I + 〈p〉 and proves the inclusion.

Finally, to prove that the regular decomposition is strict, we remark that
since h ∈

√
I + 〈p + h〉, the constructible zeros of ((S, p + h), F) are distinct

from those of (S, F ∪ {h}).

4.3 Complete Algorithm

The complete algorithm may be written recursively as follow.

Algorithm 2 (SRD)
Input: - a regular set (S, F)

- the list of the remaining generators gc, . . . , gm

Output: a SRD of (〈S〉 + 〈gc, . . . , gm〉) :
∏

f∈F f
∞

– if the list of remaining generators is empty then

- return {(S, F)}
– J:=I(S, F)
– if gc is a nonzerodivisor on R/JR then

- S′:=S, gc

- return SRD((S′, F), (gc+1, . . . , gm))
– else

- h:=Split((S, F), gc)
- S′:=S, p + h
- F ′:=F ∪ {h}
- return SRD((S, F ′), (gc+1, . . . , gm)) ∪ SRD((S′, F),(gc+1, . . . , gm)) �

Proof. of correctness
We show by recurrence on the number of remaining polynomials that the function
SRD computes correctly a strict regular decomposition of

(〈S〉 + 〈gc, . . . , gm〉) :
∏

f∈F

f
∞

First, if the remaining list is empty, then SRD returns {(S, F)}, which is
trivially a strict regular decomposition of (〈S〉) :

∏
f∈F f

∞.
Now we suppose that the output of SRD is correct when the number of

remaining polynomials is m − c, and show it is still correct for m − c + 1 poly-
nomials. The input of SDR is (S, F) and (gc, . . . , gm). If gc is a nonzerodivisor
on R/I(S, F)R, then the recurrence assumption allows us directly to conclude.

Regular Decompositions 271

If not, the choice of the polynomial h and the recurrence assumption assures us
as in lemma 3 that the union of the SRDs of

J1 := (〈S〉 + 〈gc+1, . . . , gm〉) :
(
h
∏

f∈F f
)∞

and
J2 := (〈S〉 + 〈gc + h, gc+1, . . . , gm〉) :

∏
f∈F f

∞

is a regular decomposition of (〈S〉 + 〈gc, . . . , gm〉) :
∏

f∈F f
∞. Moreover, this

decomposition is strict since V(J2) ⊂ V(h) and for all regular set (S, F) in the
decomposition of J1, we have h ∈ F .

4.4 Examples

Here, we take a small examples to see how the basic algorithm work.

Example 1.
Our ring is Q[X, Y, Z]. We consider the ideal I = 〈XY, XZ, Y Z〉

〈XY〉 〈XY,XZ〉 〈XY,XZ,YZ〉

((XY), ∅)

((XY), {Y }) ((XY, Y Z), {Y })

((XY, Y + XZ), ∅)

((XY, Y + XZ), {1})

((XY, Y + XZ, 1 + Y Z), ∅)

In the diagram, the first line represents the ideal 〈g1, . . . , gc〉 for c from 1 to
the number m of generator of the ideal. On each level of the tree (column), we
can read the successive regular decompositions of 〈g1, . . . , gc〉 for 1 ≤ c ≤ m.

Finally in this example, we end with 3 components whose algebraic zeros are
respectively:

– a line: the y-axis
– two lines: the x and z axis
– the empty set

Here is another example: the twisted curve.

Example 2. (Twisted curve)
I =
〈
XZ − Y 2, WY − Z2, WX − Y Z

〉
⊂ Q[W, X, Y, Z].

˙
XZ − Y2¸ ˙

XZ − Y2, WY − Z2¸ ˙
XZ − Y2, WY − Z2, WX − YZ

¸

`
(XZ − Y 2), ∅´ `

(XZ − Y 2, WY − Z2), ∅´

`
(XZ − Y 2, WY − Z2), {Z}´

`
(XZ − Y 2, WY − Z2, Z + WX − Y Z), ∅´

272 G. Moroz

In this decomposition, we may notice that if we obtain an SRD of the ideal
defining the twisted curve, the algebraic zeros associated are redundant. We see
in section 5 how to avoid such redundancies.

5 Optimizations

In this section, we will see how to use known methods to improve our algorithm.
The modified algorithm won’t be purely incremental anymore. The three first
subsections are dedicated to improve the practical behaviour of the algorithm.
The two last subsection show how to compute an SRD whose algebraic zeros are
not redundant.

5.1 Pruning the Tree (I)

In the algorithm stated previously, we compute a tree of regular sets. However,
each time we split a regular set, we may create branches which will lead to
regular sets with empty algebraic zeros. We show how to prune these branches.

Let I be an ideal generated by g1, . . . , gm, and (S, F) be a regular set of the
SRD of 〈g1, . . . , gc〉 with c ≤ m. By construction, its child in the computation
tree form an SRD its saturated ideal. Thus, if Dm is an SRD of I, the set DSF

of regular sets (S′, F ′) ∈ Dm who are descendants of (S, F) in the computation
tree verifies the following equality:

⋃

(S′,F ′)∈DSF

Z(S′, F ′) = V

⎛

⎝(〈S〉 + I) :
∏

f∈F

f
∞
⎞

⎠

This gives us a useful criterion to prune the tree.

Algorithm 3 (Pruning test)
Input: a regular set (S, F) and an ideal I
Output: Prune reject,Prune keep(G) or Continue

– G:=(I + 〈S〉) :
∏

f∈F f∞

– if G = 〈1〉 then

- return Prune reject

– else if the number of generators of G equals the height of (S, F) then

- return Prune keep(G)
– else

- return Continue �

5.2 Degree ordering

As a first step, we can compute a Gröbner basis of the ideal I we want to
decompose and sort the generators from the smallest to the highest degree. This
may allow us to work with intermediate ideals of smaller degrees.

Beside, in order to reduce the number of input polynomials, we may also
remove all polynomials gc included in

√
g1, . . . , gc−1. Else this step is done during

Regular Decompositions 273

the computation of SRD for all the regular sets of the regular decomposition of√
g1, . . . , gc−1.

5.3 Fraction Field

When the working field is a fraction field K(T1, . . . , Ts), most of the tests in our
algorithm may be stepped-up by specializing the parameters by random values.
Indeed, in the SRD and Split algorithm, the test of zerodivision may be done
with specialized parameters, as well as the membership test to the radical of an
ideal. The pruning test may also be done with specialized parameters.

Finally, in the Split algorithm, the saturation of I by p + h may first be
done with the parameters specialized in order to test the minimal degree bound
d necessary to obtain a polynomial outside of

√
I. Then we can use d to bound

the degrees in the saturation process with symbolic parameters.
Thus this algorithm seems well-suited for computing in fraction coefficients

field at the expense of using probabilistic tests.

Remark 4. If K = Q, we can also choose a random prime number μ and compute
the tests in characteristic μ.

5.4 Zero-Dimensional Case

As seen in section 3, we can derive a radical equidimensional decomposition of
an ideal from its SRD. In the zero-dimensional case the SRD of an ideal I has
the good property of not being redundant. Indeed:

Lemma 4. Let (S, F) be a regular set of K[X1, . . . , Xn], of height n. Then the
following equality hold:

Z(S, F) = C(S, F)

Proof. Under the assumptions, Z(S, F) is a 0-dimensional variety and C(S, F) ⊂
Z(S, F). If the inclusion is strict then there exists an isolated point p in Z(S, F)\
C(S, F) and p /∈ C(S, F) = Z(S, F), which is a contradiction.

Since for an SRD, the constructible zeros of its regular sets are pairwise disjoint,
this implies no redundancy of the algebraic zeros.

Remark 5. In the general case, we should remind that this decomposition may
be redundant as we may see in the following example.

Example 3. Let I =
〈
XY, X2

〉
⊂ Q[X, Y]. Here is the computation tree pro-

duced by our algorithm computing an SRD of I.

〈XY〉
〈
XY,X2

〉

((XY), ∅)

((XY), {Y })

(
(XY, Y + X2), ∅

)

274 G. Moroz

In this example, the SRD of I is a set of two regular sets, whose algebraic zeros
are redundant:

– Z((XY), {Y }) = V(〈X〉)
– Z((XY, Y + X2), ∅) = V(〈X, Y 〉)

Thus, with the previous optimizations, while computing an SRD of a zero-
dimensional ideal, the algorithm computes no useless regular set. Moreover if the
coefficient field is a fraction field, then we can use the optimizations of section 5.3.

5.5 Pruning the Tree (II)

Finally, using the ideas of [12] we can compute an SRD whose algebraic zeros are
not redundant. Roughly, it consists in computing regular sets of higher dimension
first in the tree. The detailed algorithm is as follow:

Algorithm 4
Input: An ideal I of a polynomial ring K[X1, . . . , Xn]
Output: A SRD of I with no redundant algebraic zeros

– D := ∅
– P := 〈1〉
– While not P ⊂

√
I

- Choose g ∈ P \
√

I
- J := I : g∞

- Find a maximal independent set Xi1 , . . . , Xis with respect to J .
- D0 :=SRD(J) over the fraction field K(Xi1 , . . . , Xis)
- Dc :=Contract the regular sets of D0 to K[X1, . . . , Xn]
- P := P ∩

⋂
(S,F)∈Dc

I(S, F)
- D := D ∪ Dc

– Done

– Return D �

Given a regular set (S, F), the contraction from K(X1, . . . , Xs)[Xs+1, . . . , Xn] to
K[X1, . . . , Xn] of (S, F) is a crucial step of the algorithm. Let Sc be a sequence
of polynomials in K[X1, . . . , Xn], equal to S up to multiples in K[X1, . . . , Xs].
Let f be a polynomial in K[X1, . . . , Xs] and in the prime components I(Sc, F)\
I(Sc, F)ec, computed as in Chapter 8, section 7 of [17] for example. Then, the
output of Contract(S, F) is (Sc, F ∪ {f}).

6 Practical Behaviour

To validate our approach, we implemented our optimized algorithm in Singu-

lar. Using the examples of [18], we present the time of different available decom-
positions methods. Here is a summary of the different functions implemented in
Singular (more details may be found in [18]):

Regular Decompositions 275

– minAssGTZ computes the minimal associated primes of an ideal using the
algorithm of [10].

– minAssChar computes the minimal associated primes using Ritt-Wu charac-
teristic sets.

– equidim computes a weak equidimensional decomposition using Gröbner
basis properties presented in [10] or [11]. The embedded components may be
replaced by others with the same radical.

– equidim-EHV computes a weak equidimensional decomposition using the al-
gorithm of [2].

Table 1. Time of equidimensional decompositions (in hundredths of second)

minAssGTZ minAssChar equidim equidim-EHV SRD

DGP1 13 7 1 1 25
DGP2 20 16 41 16 42
DGP3 3 1 4 5 3
DGP4 9 3 4 2 7
DGP5 37 * 238 * 88
DGP6 7 19 473 * 213
DGP7 12 32 16 16 24
DGP8 3 397 1 1 6
DGP9 32 1916 1 1 6
DGP10 8 * 0 1 7
DGP11 * * 8 6 64
DGP12 43 * 0 0 3
DGP13 19 * 0 1 6
DGP14 4 5 2 1 0
DGP15 22 281 1 0 47
DGP16 330 3721 153 143 410
DGP17 99 * 0 0 5
DGP18 6 213 1 1 11
DGP19 7 * 4 3 14
DGP20 8 304 5 195 26
DGP21 1 1 10 13 5
DGP22 13 13 59 * 42
DGP23 47 40 30 * 44
DGP24 4 8 9 20 3
DGP25 55 142 921 * 242
DGP26 28 * 0 1 16
DGP27 6 21 0 0 2
DGP28 13 11 1 0 1
DGP29 2 0 2499 * 4
DGP30 91 46 8 * 30
DGP31 5 2 0 0 1
DGP32 5 5 68 * 19
DGP33 4 3 2 1 11
DGP34 * * 3 3 62

* Means that the computation took more than 60 seconds.
(the cpu is a 32 bits, 2.8GHz Intel pentium)

276 G. Moroz

Finally, SRD denotes the algorithm presented in this paper.
One can see on the table 1 that an SRD computation may be faster on some

examples, and slower on others. Beside, in most of the cases the order of magni-
tude is less than one second and the running time never goes beyond 5 seconds.

Acknowledgements

I would like to thank the referees for their accurate remarks and careful review.

References

1. Bertini, E.: Sui sistemi lineari. Istit. Lombardo Accad. Sci. Lett. Rend. A Isti-
tuto 15(II), 24–28 (1982)

2. Eisenbud, D., Huneke, C., Vasconcelos, W.: Direct methods for primary decompo-
sition. Invent. Math. 110(2), 207–235 (1992)

3. Wu, W.J.: On zeros of algebraic equations—an application of Ritt principle. Kexue
Tongbao (English Ed.) 31(1), 1–5 (1986)

4. Lazard, D.: A new method for solving algebraic systems of positive dimension. Dis-
crete Appl. Math. 33(1-3), 147–160 (1991); Applied algebra, algebraic algorithms,
and error-correcting codes, Toulouse (1989)

5. Kalkbrener, M.: Three Contributions to Elimination Theory. Technical report, Jo-
hannes Kepler University, Linz, Austria (1991)

6. Aubry, P., Moreno Maza, M.: Triangular sets for solving polynomial systems: a
comparative implementation of four methods. J. Symbolic Comput. 28(1-2), 125–
154 (1999); Polynomial elimination—algorithms and applications

7. Wang, D.: Computing triangular systems and regular systems. J. Symbolic Com-
putation 30(2), 221–236 (2000)

8. On triangular decompositions of algebraic varieties, Technical Report TR 4/99,
NAG Ltd., Oxford, UK. Presented at the MEGA 2000 (1999)

9. Lecerf, G.: Computing an equidimensional decomposition of an algebraic variety by
means of geometric resolutions. In: Proceedings of ISSAC 2000. ACM, New York
(2000)

10. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition
of polynomial ideals. J. Symbolic Comput. 6(2-3), 149–167 (1988); Computational
aspects of commutative algebra

11. Caboara, M., Conti, P., Traverso, C.: Yet another ideal decomposition algorithm.
In: Mattson, H.F., Mora, T. (eds.) AAECC 1997. LNCS, vol. 1255, pp. 39–54.
Springer, Heidelberg (1997)

12. Laplagne, S.: An algorithm for the computation of the radical of an ideal. In: ISSAC
2006, pp. 191–195. ACM, New York (2006)

13. Kalkbrener, M.: Algorithmic properties of polynomial rings. J. Symbolic Com-
put. 26(5), 525–581 (1998)

14. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. Grad-
uate Texts in Mathematics, vol. 150. Springer, Heidelberg (1994)

15. Matera, G., Turull Torres, J.M.: The space complexity of elimination theory: upper
bounds. In: Foundations of computational mathematics, pp. 267–276. Springer,
Heidelberg (1997)

Regular Decompositions 277

16. Kaplansky, I.: Commutative rings. Revised edn. The University of Chicago Press,
Chicago (1974)

17. Becker, T., Weispfenning, V.: Gröbner bases. Graduate Texts in Mathematics,
vol. 141. Springer, New York (1993)

18. Decker, W., Greuel, G.M., Pfister, G.: Primary decomposition: algorithms and
comparisons. In: Algorithmic algebra and number theory, pp. 187–220. Springer,
Heidelberg (1997/1999)

Floating-Point Gröbner Basis Computation

with Ill-conditionedness Estimation�

Tateaki Sasaki1 and Fujio Kako2

1 Institute of Mathematics, University of Tsukuba
Tsukuba-shi, Ibaraki 305-8571, Japan

sasaki@math.tsukuba.ac.jp
2 Department of Comp. Sci., Nara Women’s University

Nara-shi, Nara 630-8506, Japan
kako@ics.nara-wu.ac.jp

Abstract. Computation of Gröbner bases of polynomial systems with co-
efficients of floating-point numbers has been a serious problem in computer
algebra for many years; the computation often becomes very unstable and
people did not know how to remove the instability. Recently, the present
authors clarified the origin of instability and presented a method to re-
move the instability. Unfortunately, the method is very time-consuming
and not practical. In this paper, we first investigate the instability much
more deeply than in the previous paper, then we give a theoretical analy-
sis of the term cancellation which causes loss of accuracy in various cases.
On the basis of this analysis, we propose a practical method for computing
Gröbner bases with coefficients of floating-point numbers. The method uti-
lizes multiple precision floating-point numbers, and it removes the draw-
backs of the previous method almost completely. Furthermore, we present
a practical method of estimating the ill-conditionedness of the input
system.

1 Introduction

Algebraic computation of polynomials with floating-point numbers is a recent hot
theme in computer algebra, and many works have been done on the approximate
GCD (greatest common divisor), on the approximate polynomial factorization,
and so on [15]. However, computation of Gröbner bases with floating-point num-
bers (floating-point Gröbner bases, in short) is just at the beginning of research,
although it is a very important theme in approximate algebraic computation (ap-
proximate algebra). There are two kinds of floating-point Gröbner bases: the first
kind is where the coefficients of input polynomials are exact (algebraic numbers
or real/complex numbers) but we approximate them by floating-point numbers
for some reasons, and the second kind is where the coefficients are inexact hence
we express them by floating-point numbers. This paper deals with the second
kind.
� Work supported in part by Japan Society for the Promotion of Science under Grants

19300001.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 278–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Floating-Point Gröbner Basis Computation 279

The first kind of floating-point Gröbner bases were studied by Shirayanagi and
Sweedler [11], [12], [13]. The second kind of floating-point Gröbner bases were
studied by Stetter [14], Fortuna, Gianni and Trager [5], Traverso and Zanoni
[18], [17], Weispfenning [19], Kondratyev, Stetter and Winkler [8], Gonzalez-
Vega, Traverso and Zanoni [6], Stetter [16], Bodrato and Zanoni [2], Mourrain
and his coworkers [9], and so on. How to compute floating-point Gröbner bases
stably was, however, an open problem for many years. A breakthrough was
attained recently by [10], in which the authors clarified the origin of instability
of computation and proposed a stable method.

According to [10], there are two origins of instability: one is main-term can-
cellation (for main terms, see the beginning of Subsect. 2.1), and the other is the
appearance of fully erroneous terms (the leading digit is an error). In the com-
putation of Gröbner bases, the main terms of two polynomials sometimes cancel
one another in the subtraction, causing large numerical errors. The main-term
cancellation is often exact, and exact cancellation with floating-point numbers
usually yields a fully erroneous term. If a fully erroneous term appears as a
leading term, subsequent computation will be fully wrong.

In [10], the authors classified the main-term cancellation into two types, can-
cellation due to self-reduction and intrinsic cancellation. Self-reduction is caused
by a polynomial with small or large leading term, just as the elimination by a
small pivot row causes large cancellations in Gaussian elimination. The numerical
errors due to self-reduction are avoidable, as we will explain later. The intrinsic
cancellation is similar to cancellation which occurs in ill-conditioned numerical
matrix; see Example 1 in Sect. 2. We want to know the amounts of intrinsic
cancellations. One reason is that the accuracy of floating-point Gröbner basis is
reduced by the amounts. Another reason is that knowing the amounts seems to
be crucial for computing approximate Gröbner bases; see [10].

In [10], in order to remove the instability of computation due to self-reduction,
the authors proposed to replace each small leading coefficient by an independent
symbol and, in the case of large leading term, multiply a symbol to the terms
other than the leading term. We call this method symbolic coefficient method.
They remove fully erroneous terms by representing numeric coefficients by “ef-
fective floating-point numbers (efloats)”; we explain the efloat in Subsect. 4.2.
The efloats work quite well. However, the symbolic coefficient method has two
serious drawbacks: 1) it is very time-consuming because we must handle polyno-
mials with symbolic coefficients, and 2) it cannot completely remove the errors
due to self-reduction, because even a leading term of relative magnitude 0.3, say,
may cause considerable errors.

In this paper, we propose a new method for avoiding the errors due to self-
reduction. The new method does not introduce any symbol but it employs mul-
tiple precision effective floating-point numbers (big-efloats), hence the method is
much more efficient than the symbolic coefficient method. In the new method,
self-reduction is not avoided but we will show that it does not reduce the ac-
curacy of the Gröbner basis computed. Furthermore, we propose a method to
estimate the amount of intrinsic cancellation.

280 T. Sasaki and F. Kako

2 Instability Due to Self-reduction

First of all, we emphasize that we compute Gröbner bases by successive
eliminations of leading terms. This is crucial in the following arguments.

By F, G, etc., we denote multivariate polynomials with coefficients of floating-
point numbers. The norm of polynomial F is denoted by ‖F‖; we employ the
infinity norm, i.e., the maximum of the absolute values of numerical coefficients
of F . For notions on Gröbner bases, we follow [4]. A power product is a term
with no coefficient. By lt(F), lc(F) and rt(F) we denote the leading term, the
leading coefficient and the reductum, respectively, of F , w.r.t. a term order .:
F = lt(F) + rt(F) with lt(F) . rt(F). By Spol(F, G) and Lred(F, G) we denote
the S-polynomial of F and G and the reduction of leading term of F by G,
respectively. By reduction of F by G, we mean Lred(F, G). Lred(F, G) is often
expressed as F

G−→ F̃ . By F
G−→→ F̃ we denote successive reductions of F by G

so that lt(F̃) is no more reducible by G.
We explain intrinsic cancellation by an example. In order to ease the reader

to check our computation of examples, we construct examples by converting
rational number coefficients into double precision floating-point numbers.

Example 1. Simple example which exhibits intrinsic cancellation.
⎧
⎨

⎩

P1 = 57/56 x2y + 68/67 xz2 − 79/78 xy + 89/88 x

P2 = xyz3 − xy2z + xyz

P3 = 56/57 xy2 − 67/68 yz2 + 78/79 y2 − 88/89 y

⎫
⎬

⎭ (2.1)

We convert P1, P2, P3 into erroneous polynomials by converting their coefficients
into double precision floating-point numbers. Then, we compute a Gröbner ba-
sis w.r.t. the total-degree order with x . y . z, using 30-digit floating-point
numbers. We obtain the following unreduced Gröbner basis (correct figures are
underlined).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1, P2, P3 are unchanged,

P6 = y2z2 − 2.995436947732552644538319700370xy2

− 1.0020782165123748257674951096740 y3

+ 1.9983254691737245140192885621560xy + · · · ,

P7 = xz2 − 1.764316342370426661429391997320e−3yz2

− 9.947232450186805419457332443380e−1xy

+ 1.7679829737261936385647927531480e−3y2 + · · · .

We see that some relative errors have been increased by about 104. ��

2.1 Clones and Self-reduction Caused by Small Leading Terms

We use notation F ≈ G if ‖F−G‖ / ‖G‖ and ‖F‖ = O(‖G‖) if η < ‖F‖/‖G‖ <

1/η, where η is a positive number less than 1 but not much less than 1. (In our
computer program, we set η = 0.2 and specify ‖G‖ / ‖F‖ to be ‖G‖ < 0.2 ‖F‖.)
We call a polynomial F normal if |lc(F)| = O(‖rt(F)‖). We call a term T of F

a main term if ‖T ‖ = O(‖F‖).

Floating-Point Gröbner Basis Computation 281

Definition 1 (clone). Let R be either Spol(F, G), Lred(F, G) or F
G−→→ R. If

R ≈ M rt(G), with M a monomial, then R is called a clone of G and denoted
by clone(G). Let ‖F‖ = ‖G‖ = 1. We call ‖R‖/‖rt(G)‖ likeness of the clone.

Let F1 and F2 be normal polynomials and G be a polynomial with small leading
term, |lc(G)| / ‖G‖. Suppose that F1 and F2 are reduced by G as

F1
G−→→ F̃1, F2

G−→→ F̃2 (F1
= F̃1, F2
= F̃2) . (2.2)

Then, so long as |lc(Fi)|/‖Fi‖ 0 |lc(G)|/‖G‖ (i=1, 2), we usually have

F̃1 ≈ M1 rt(G) and F̃2 ≈ M2 rt(G) , (2.3)

where M1 and M2 are the monomial multipliers in the last reductions, hence F̃1

and F̃2 are clones of G. We consider Spol(F̃1, F̃2); we do not consider Lred(F̃1, F̃2)
or Lred(F̃2, F̃1), because Spol(F̃1, F̃2) = Lred(F̃1, F̃2) if lt(F̃2) | lt(F̃1) and
Spol(F̃1, F̃2) = −Lred(F̃2, F̃1) if lt(F̃1) | lt(F̃2) . Let Spol(F̃1, F̃2) = M̃1F̃1 −
M̃2F̃2, where M̃1 and M̃2 are monomials. Note that we may have lt(F̃i) .
Mi rt(G) (i ∈ {1, 2}). In order to avoid this case, we assume that

lt(F̃1) ≈ lt(M1 rt(G)) and lt(F̃2) ≈ lt(M2 rt(G)) . (2.4)

Under condition (2.4), we have Spol(F̃1, F̃2) ≈ M̃1M1 rt(G)−M̃2M2 rt(G), hence
we have ‖Spol(F̃1, F̃2)‖ ≈ ‖M̃1M1 rt(G)− M̃2M2 rt(G)‖ / ‖M̃1M1 rt(G)‖. This
means that all the main terms of M̃1M1 rt(G) and M̃2M2 rt(G) nearly cancel
each other; the cancellation is exact if

lt(F̃1) = lt(M1 rt(G)) and lt(F̃2) = lt(M2 rt(G)) . (2.5)

Obviously, the above argument is valid for the case of F̃1 = Spol(F1, G) and/or
F̃2 = Spol(F2, G). The above near cancellation of all the main terms in clones
was called “self-reduction” in [10].

We must be careful in treating binomials with small leading terms. Let F1 and
F2 be normal polynomials as given above, and let the reducer G be a binomial
with small leading term: G = g1T1 + g2T2 with |g1| / |g2|, where T1 and T2

are power products. Then, Lred(F1, G) becomes a polynomial with one large
term, and so is Lred(F2, G). Let F̃i = Lred(Fi, G) ≈ MiT2 (i = 1, 2), where Mi

is a monomial. If lt(F̃i) ≈ MiT2 (i=1, 2) then Spol(F̃1, F̃2) does not cause self-
reduction. Self-reduction occurs only when lt(F̃i) . MiT2 (i=1, 2), lt(F̃1)M2 ≈
lt(F̃2)M1 and |lc(F̃1)|/‖F̃1‖ ≈ |lc(F̃2)|/‖F̃2‖, which is unlikely to occur. We
must notice, however, that G generates a polynomial with one large term. If
the large term is the leading term then self-reduction may occur later, as we
will explain below. Even if the large term is not the leading term, subsequent
reductions may generate a polynomial with large leading term.

2.2 Self-reduction in Three Other Cases

Particularly large leading terms can also cause self-reductions, but the situation
is pretty different. Let F1 and F2 be polynomials with large leading terms, and
G be a normal polynomial:

282 T. Sasaki and F. Kako

|lc(Fi)| / ‖rt(Fi)‖ (i = 1, 2) , |lc(G)| = O(‖rt(G)‖) . (2.6)

Then, we can express Lred(Fi, G) (i=1, 2) as follows:

Lred(Fi, G) = Fi − lc(Fi)/lc(G) · TiG ≈ −lc(Fi)/lc(G) · Ti rt(G) , (2.7)

where T1 and T2 are power products. Therefore, Lred(Fi, G) is a clone of G,
and self-reduction may occur in Spol(Lred(F1, G), Lred(F2, G)). Note that self-
reduction requires two polynomials with large leading terms. Therefore, self-
reduction by polynomials with large leading terms is not frequent. Note further
that the reduction of a polynomial F with a large leading term by a polynomial
G with a small leading term generates a clone of very large likeness: the likeness
is (|lc(F)|/‖rt(F)‖) · (‖G‖/|lc(G)|).

Polynomial F may be reduced by G1, . . . , Gm successively: F
G1−→→ · · · Gm−→→ F̃ .

Here, G1, . . . , Gm are polynomials with small leading terms and the reduction
by each Gj (1 ≤ j ≤ m) generates a clone(Gj). In this case, we call F̃ an m

multiple clone, and represent it as clone(G1, . . . , Gm).
We have a more complicated self-reduction which we call paired self-reduction.

Let normal polynomials F1 and F2 be reduced, respectively, by G1 and G2 which
are polynomials with small leading terms: Fi

Gi−→ F̃i (i=1, 2). There may occur
self-reduction in Spol(F̃1, F̃2), if F1, F2, G1 and G2 satisfy several conditions
which are seldom satisfied. Because of the page limit, we omit the explanation
of paired self-reduction.

Example 2. Simple system causing large errors (an example given in [10]).⎧
⎨

⎩

P1 = x3/10.0 + 3.0x2y + 1.0y2

P2 = 1.0x2y2 − 3.0xy2 − 1.0xy

P3 = y3/10.0 + 2.0x2

⎫
⎬

⎭

We compute a Gröbner basis w.r.t. the total-degree order with x . y . z, using
double precision floating-point numbers, just as we compute a Gröbner basis
over Q. We show about two-thirds of the steps.

1 : Spol(P3, P2)
P1−→ P1−→ P2−→ P3−→

P1

−→ P4 /∗ P4 = clone(P1)
2 : P4 = x2y + 29.8 · · ·xy2 + 3.33 · · ·y3 + 10.0xy + 0.333 · · ·y2

3 : P2
P4−→ P3−→

P1

−→
P4

−→ P ′
2 /∗ P ′

2 = clone(P1, P4)
4 : P ′

2 = xy2 + 0.111 · · ·y3 + 0.334 · · ·xy − 0.000041 · · ·y2

5 : Spol(P3, P
′
2)

P3−→
P1

−→
P4

−→
P ′

2

−→ P3−→ P5 /∗ self-reduction
6 : P5 = x2 + 7.14 · · ·xy + 0.573 · · ·y2

7 : P4
P5−→ P ′

2−→ P3−→
P5

−→ P ′
4 /∗ P ′

4 = clone(P5)
8 : P ′

4 = xy + 0.0844 · · ·y2

9 : P ′
2

P ′
4−→ P3−→

P5

−→
P ′

4

−→ P ′′
2 /∗ self-reduction

Floating-Point Gröbner Basis Computation 283

Here, the polynomials boxed show clones and reducers which generate clones; the
clones and self-reductions are commented in the right column. The above com-
putation causes a very large cancellation: self-reductions in Steps 5 and 9 cause
cancellations of O(108) and O(102), respectively. Other steps of computation
cause almost no cancellation.

In Step 1, Spol(P3, P2) is a polynomial with large leading term and two reduc-
tions by P1 give a clone of very large likeness, but it is erased by the subsequent
reduction by P2; P3 is a binomial but the reduction by P3 does not generate a
polynomial with a large term, so we do not mind the reduction; the final reduc-
tion by P1 gives a clone, i.e., P4 = clone(P1). In Step 3, the first reduction by
P4 gives a clone but the clone is erased by the subsequent reduction by P3; the
reduction by P1 gives a clone, and the clone is reduced by P4 having a small
leading term, hence P ′

2 is a double clone. In Step 5, reductions by P1 and P4

give a double clone, and the double clone is reduced by another double clone P ′
2,

hence there occurs self-reduction between double clones. ��

We explain why such large cancellations occur in Example 2. P ′
2 in Step 3 is

a double clone generated by successive reductions by P1 and P4, and so is
the clone(P1, P4) obtained in Step 5. Following Theorem 1 in the next sec-
tion, one may think that the amount of cancellation caused by self-reduction
is O((‖P1‖/|lc(P1)|)(‖P4‖/|lc(P4)|)). Actually, we encounter a much larger can-
cellation. The reason for this superficial discrepancy is that, before the re-
duction by P1, the polynomial concerned has been reduced by a binomial P3

with a small leading term. Hence, Lred(Lred(Lred(�, P3), P1), P4) becomes
a polynomial of very large likeness. The analysis in the next section shows
that the actual amount of cancellations occurred is O((‖P1‖/|lc(P1)|)2
(‖P3‖/|lc(P3)|)2). In fact, the symbolic coefficient computation in [10] shows this
symbolically.

3 Analysis of Self-reductions Given in Sect. 2

In [10], we analyzed only the typical self-reduction by single clones. In this sec-
tion, we analyze the self-reductions given in Sect. 2, in particular, self-reduction
by multiple clones.

Following Collins [3], we introduce the concept of associated polynomial. Let
polynomials Pi (i = 1, . . . , n) be expressed as Pi = ci1T1 + · · · + cimTm, where
T1, . . . , Tm are power products, and let M = (cij) be an n × m matrix, where
n ≤ m. The polynomial associated with M , which we denote by assP(M), is
defined as follows.

assP

⎛

⎜⎝
c11 · · · c1n · · · c1m

...
. . .

...
. . .

...
cn1 · · · cnn · · · cnm

⎞

⎟⎠ def=
m−n∑

i=0

∣∣∣∣∣∣∣

c11 · · · c1,n−1 c1,n+i

...
. . .

...
...

cn1 · · · cn,n−1 cn,n+i

∣∣∣∣∣∣∣
Tn+i . (3.1)

284 T. Sasaki and F. Kako

3.1 Analysis of Self-reduction by Double Clones

Let polynomials F and F ′ be expressed as F = f1S1 + f2S2 + · · · + fmSm and
F ′ = f ′

1S
′
1 + f ′

2S
′
2 + · · · + f ′

mS′
m, where Si and S′

i (i ≥ 1) are power products
satisfying Si . Si+1, Si = SS′

i for some power product S, and f1f
′
1
= 0 (some

of fj or f ′
j (j > 1) may be 0). Let polynomials G and G′ be G = g1T1 + g2T2 +

· · · + gnTn and G′ = g′1T
′
1 + g′2T

′
2 + · · · + g′nT ′

n, where Ti and T ′
i (i ≥ 1) are

power products satisfying Si = TTi and S′
i = T ′T ′

i for some power products T

and T ′, and g1g
′
1
= 0 (some of gj or g′j (j > 1) may be 0). We consider the case

that both F and F ′ are reduced k times by G and then reduced k′ times by G′:

F
G−→ · · · G−→ G′

−→ · · · G′
−→ F̃ and F ′ G−→ · · · G−→ G′

−→ · · · G′
−→ F̃ ′, hence F̃ and

F̃ ′ are double clones of G and G′. The next lemma is well known; we can easily
prove it by mathematical inductions on k and k′ (cf. [3]).

Lemma 1 (well known). Let F , G and G′ be defined as above. Suppose F

is reduced k times by G then reduced k′ times by G′ (only the leading terms
are reduced), then the resulting polynomial F̃ can be expressed as (we discard a
numerical multiplier)

F̃ = assP

⎛

⎜⎜⎜⎜⎜⎜⎝

f1 f2 · · · fn fn+1 · · · · · ·
g1 g2 · · · gn

. · · · . . .
g′1 g′2 · · · g′n

. · · · . . .

⎞

⎟⎟⎟⎟⎟⎟⎠
, (3.2)

where the numbers of (· · · g1 · · · gn · · ·)-rows and (· · · g′1 · · · g′n · · ·)-rows are k and
k′, respectively. Here, polynomials F , G and G′ are padded suitably by zero-
coefficient terms so that the elements in each column of the matrix (3.2) corre-
spond to the same term, as in (3.1).

Theorem 1. Let F , F ′, F̃ and F̃ ′ be as above, and assume that lt(F̃)/lc(F̃) =
S lt(F̃ ′)/lc(F̃ ′), with S a power product. Let F̃ and F̃ ′ be expressed as in (3.2) (for
F̃ ′, we must replace the top row by (f ′

1 f ′
2 · · · f ′

n · · ·)). Then, lc(F̃ ′)F̃ − lc(F̃)SF̃ ′

can be factored as

∣∣∣∣∣∣∣∣∣∣∣∣

g1 · · · gk · · · gk+k′

. · · ·
...

g′1 · · · g′k′

. . .
...
g′1

∣∣∣∣∣∣∣∣∣∣∣∣

× assP

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1 f2 · · · fn fn+1 · · · · · ·
f ′
1 f ′

2 · · · f ′
n f ′

n+1 · · · · · ·
g1 g2 · · · gn

. · · · . . .
g′1 g′2 · · · g′n

. · · · . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.3)

where the numbers of (· · · g1 · · · gn · · ·)-rows and (· · · g′1 · · · g′n · · ·)-rows in
the above matrix are k and k′, respectively.

Floating-Point Gröbner Basis Computation 285

Proof . The coefficient of Sk+k′+i term (i ≥ 2) in lc(F̃ ′)F̃ − lc(F̃)SF̃ ′ is
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′
1 · · · f ′

k · · · f ′
k+k′ f ′

k+k′+1

g1 · · · gk · · · gk+k′ gk+k′+1

. . . · · · . . .
...

...
g′1 · · · g′k′ g′k′+1

. . .
...

...
g′1 g′1+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 · · · fk · · · fk+k′ fk+k′+i

g1 · · · gk · · · gk+k′ gk+k′+i

. . . · · · . . .
...

...
g′1 · · · g′k′ g′k′+i

. . .
...

...
g′1 g′1+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.4)

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 · · · fk · · · fk+k′ fk+k′+1

g1 · · · gk · · · gk+k′ gk+k′+1

. . . · · · . . .
...

...
g′1 · · · g′k′ g′k′+1

. . .
...

...
g′1 g′1+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′
1 · · · f ′

k · · · f ′
k+k′ f ′

k+k′+i

g1 · · · gk · · · gk+k′ gk+k′+i

. . . · · · . . .
...

...
g′1 · · · g′k′ g′k′+i

. . .
...

...
g′1 g′1+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The Sylvester identity allows us to factor the above expression as

⇒

∣∣∣∣∣∣∣∣∣∣∣∣

g1 · · · gk · · · gk+k′

. . . · · · . . .
...

g′1 · · · g′k′

. . .
...

g′1

∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 · · · fk · · · fk+k′ fk+k′+1 fk+k′+i

f ′
1 · · · f ′

k · · · f ′
k+k′ f ′

k+k′+1 f ′
k+k′+i

g1 · · · gk · · · gk+k′ gk+k′+1 gk+k′+i

. . . · · · . . .
...

...
...

g′1 · · · g′k′ g′k′+1 g′k′+i

. . .
...

...
...

g′1 g′1+1 g′1+i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.5)

This proves the theorem. ��

Remark 1. Consider the case that F is reduced k1 times by G then reduced
k′
1 times by G′ and F ′ is reduced k2 times by G then reduced k′

2 times by G′.
If k1 > k2, for example, then we put k = k2 and treat the result of k1 −k2

reductions of F as a new F . If k′
1
= k′

2 then F̃ and F̃ ′ are not double clones but
we must treat them as single clones of G′. ��

Remark 2 . Theorem 1 can be generalized easily to the case of multiple clones:

F
G1−→ · · · G1−→ · · · Gj−→ · · · Gj−→ F̃ and F ′ G1−→ · · · G1−→ · · · Gj−→ · · · Gj−→ F̃ ′, where

F̃ = clone(G1, . . . , Gj) and F̃ ′ = clone(G1, . . . , Gj). ��

The above theorem is valid for any G and G′, regardless of the magnitudes of
leading terms of G and G′. The theorem tells us that term cancellations occur
frequently: all the terms that are not proportional to gk

1g′1
k′

cancel one another.
This cancellation does not cause large errors usually. If |lc(G)| / ‖G‖ and/or
|lc(G′)| / ‖G′‖, however, the term cancellation is the main-term cancellation
and it causes large errors. Below, we order-estimate the amount of term cancel-
lation occurring in lc(F̃ ′)F̃ − lc(F̃)SF̃ ′ in a simple case.

286 T. Sasaki and F. Kako

3.2 Estimation of Amount of Main-Term Cancellation

By D̃1, D̃
′
1, D̃i and D̃′

i, we denote the determinants representing lc(F̃), lc(F̃ ′),
the coefficient of Sk+k′+i term of F̃ , and the coefficient of Sk+k′+i term of SF̃ ′,
respectively, hence the first expression in the proof of Theorem 1 is D̃′

1D̃i−D̃1D̃
′
i.

Furthermore, by D̃1i, we denote the determinant of order k+k′+2 in the r.h.s. of
(3.5). The magnitudes of D̃1 etc. change complicatedly as the situation changes,
so we assume that the coefficients of F and F ′ are as follows.

f1 = f ′
1 = 1, fi = 0 or O(1), f ′

i = 0 or O(1) (i ≥ 2). (3.6)

Corollary 1. Let the coefficients of F and F ′ be as in (3.6). Let reducers G and
G′ be polynomials with coefficients such that

|g1| / 1, g2 = · · · = gl−1 = 0, |gl | = O(1), |gl+i | = O(1) or 0,

|g′1| / 1, g′2 = · · · = g′l′−1 = 0, |g′l′ | = O(1), |g′l′+i| = O(1) or 0.
(3.7)

Claim 1: when l = l′ = 2 (hence g2 = O(1) and g′2 = O(1)), there occurs cancel-
lation of amount O((1/g1)k(1/g′1)

k′
) in the computation of lc(F̃ ′)F̃ − lc(F̃)SF̃ ′.

Claim 2: when l ≥ 3 and/or l′ ≥ 3 (hence g2 = 0 and/or g′2 = 0), let |D̃1| =
O((g1)κ1(g′1)

κ′
1), |D̃i| = O((g1)κi(g′1)

κ′
i) and |D̃1i| = O((g1)κ̃ (g′1)

κ̃′
), then there

occurs cancellation of amount O((1/g1)k−κ1−κi+κ̃(1/g′1)
k′−κ′

1−κ′
i+κ̃′

) in the
computation of lc(F̃ ′)F̃ − lc(F̃)SF̃ ′.

Proof. When l = l′ = 2, consider D̃1 for example, which is the determinant
constructed from the leftmost k+k′+1 columns of matrix in (3.2). The product
of diagonal elements gives the main term of D̃1, because other terms contain
at least one g1 or g′1. Similarly, if we consider those D̃1i for which f ′

k+k′+i
= 0,
we see that D̃1i = O(1). Then, determinants in (3.5) lead us to Claim 1. The
determinants also lead us to Claim 2, because the main terms of D̃′

1D̃ and D̃1D̃
′
i

must be of the same order. ��

Determination of κ̃1, κ̃
′
1, κ̃i, κ̃

′
i, κ̃ and κ̃′ in the general case of l ≥ 3 and/or l′ ≥ 3

is messy. Because of the page limit, we omit the determination.
Theorem 1 allows us to analyze self-reduction caused by polynomials with

large leading terms and paired self-reduction, too. For the case of large leading
terms, we put F1 = F , F2 = F ′ and G′ = G, and assume that the leading terms
of F and F ′ are large. Then, estimating the magnitudes of determinants in (3.5),
we obtain the following corollary which can be easily generalized to the case that
F1 and/or F2 contain several large terms at their heads.

Corollary 2. Let F and F ′ be polynomials with large leading terms and G be
a normal polynomial. Put F̃ = Lred(F, G) and F̃ ′ = Lred(F ′, G). Then, in the
computation of Spol(F̃1, F̃2), there occurs main-term cancellation of magnitude
min(|lc(F)|/‖rt(F)‖, |lc(F ′)|/‖rt(F ′)‖).

Floating-Point Gröbner Basis Computation 287

4 New Method of Stabilization

We consider that the coefficients of input system of polynomials are inexact.
If the largest relative error in the coefficients is ε then we say the accuracy of
the system is ε. Below, by εm we denote the machine epsilon (= the difference
between 1 and the smallest representable number greater than 1) of double pre-
cision floating-point numbers (double-floats). If the coefficients of input system
are given by double-floats, we have ε ≥ εm.

4.1 Supporting Theorem

We will compute the Gröbner basis by converting each input coefficient into a
multiple precision floating-point number (big-float). We assume that each big-
float is a p-digit decimal number satisfying 10−p / ε, and put εM = 10−p.

Theorem 2. As far as self-reductions treated in Sect. 3 are concerned, the main-
term cancellation due to self-reduction ruins only tail figures of the coefficients
concerned.

Proof. We note that, although the big-floats in our case contain relative er-
rors which are much larger than εM, the errors are introduced initially and the
coefficients are treated as definite numbers of the full precision throughout the
computation. On the other hand, Theorem 1 implies that, in the self-reductions
considered, the coefficients of main terms cancel exactly within the precision.
Hence the self-reductions ruin only tail figures of the coefficients. ��

Remark 3. One may think that all the cancellation errors can be avoided if
we increase the precision. This is, however, wrong as Example 1 shows. In the
self-reductions we have considered, the main terms cancel exactly, which is the
key of Theorem 2. ��

4.2 Effective Floating-Point Numbers

In actual computation, we must remove the fully erroneous terms and estimate
the amount of accuracy loss. Thus, we utilize multiple precision effective floating-
point numbers (big-efloats), instead of big-floats.

We explain the efloats briefly. The efloat was proposed by the present authors
in 1997 [7] so as to detect the cancellation errors automatically. The efloat is a
pair of two floating-point numbers and expressed as #E[f, e]; we call f and e

value-part and error-part, respectively. The arithmetic of efloats is as follows.

#E[fa, ea] + #E[fb, eb] =⇒ #E[fa + fb, max{ea, eb}],
#E[fa, ea] − #E[fb, eb] =⇒ #E[fa − fb, max{ea, eb}],
#E[fa, ea] × #E[fb, eb] =⇒ #E[fa × fb, max{|fbea|, |faeb|}],
#E[fa, ea] ÷ #E[fb, eb] =⇒ #E[fa ÷ fb, max{|ea/fb|, |faeb/f2

b |}].

(4.1)

288 T. Sasaki and F. Kako

Thus, the value-part of efloat is nothing but the conventional floating-point value.
On the other hand, the error-part of efloat represents the cancellation error
approximately; the rounding errors are neglected in determining the error-part.
Similarly, we neglect the rounding errors throughout the following arguments.

The big-efloat is expressed as #BE[f, e], where f is a big-float, and it is
processed by the same arithmetic as efloat. We set the error-part e to 10−p+2 |f |.

We explain how the fully erroneous terms are removed (we explain only for
the case of efloats). We set the error-part of each efloat coefficient to 5ε|f | (in
the examples, we set to about 5εm|f |). In our algebra system named GAL, the
efloat #E[f, e] with |f | < e is automatically set to 0 (not #E[0, 0]). Therefore,
GAL removes fully erroneous terms unless the rounding errors accumulate to
5εm or more, which is extremely rare in practice.

Example 3. Check Theorem 2 by the system in Example 2.

We convert the coefficients into double-floats, and compute a Gröbner basis with
big-efloats of 30 decimal precision. For reference, we show the initial polynomials;
if all the figures from 17th to the last decimal places are 0, our system outputs
only one 0. Note that the rounding errors appear at the 17th decimal places.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P1 =+ #BE[3.33333333333333310e−2, 2.0e−28] x3 + x2y
+ #BE[3.33333333333333310e−1, 3.2e−27] y2,

P2 =+ #BE[3.33333333333333310e−1, 3.2e−27] x2y2 − xy2,
− #BE[3.33333333333333310e−1, 3.2e−27] xy

P3 =+ #BE[5.0000000000000000e−2, 3.9e−28] y3 + x2.

The Spol(P3, P1), for example, is reduced and normalized as follows; we see that
17th to 30th figures of xy3 term are contaminated by rounding errors.

x4 + #BE[1.5000000000000001665334536937720e−1, 3.9e−28] xy3

+ #BE[5.0000000000000000e−2, 2.0e−28] xy2.

We obtain the following unreduced Gröbner base.
⎧
⎪⎪⎨

⎪⎪⎩

P ′′
2 =y2,

P ′
4 =xy + #BE[8.440225504521958676289311654600e−2, 3.3e−21] y2,

P5 =x2 + #BE[7.148496897462707006365493318940, 4.2e−19] xy

+ #BE[5.737161395246457225742044589410e−1, 2.6e−20] y2.

Here, underlines show correct figures. We see that, although large cancellations
have occurred, the accuracy loss in the Gröbner basis is only slight. ��

4.3 Description of New Method

Now, we describe our new method which is based on Theorem 2 crucially. The
method is composed of the following three devices.

Device 1: Convert the numeric coefficients of input polynomials into big-
efloats of a suitably determined initial precision, say p = 30, and compute the
Gröbner basis by using only the leading-term reduction and the S-polynomial
construction.

Floating-Point Gröbner Basis Computation 289

Device 2: Monitor the error-parts of big-efloat coefficients during the compu-
tation, and if the amount of the largest cancellation accumulated, let it be
C, becomes large satisfying εMC > 10−5ε, say, then increase the precision
of big-efloats and retry the computation.

Device 3: Monitor the clone generation of likeness greater than 5, say, and
self-reduction by such clones. We explain the device for single reduction; for
multiple reductions, see Sect. 5. Suppose that self-reduction occurs in the
subtraction F̃1−F̃2 in computing Spol(Lred(F1, G), Lred(F2, G)) etc. Here,
F̃1 = clone(G) and F̃2 = clone(G), hence F̃i = −ciT rt(G) + (small-terms)
(i = 1, 2), where c1 and c2 are numbers such that c1 ≈ c2 and T is a
power product. Then, we “subtract” −rt(G) from both F̃1 and F̃2 as F̃ ′

1 :=
F̃1+c T rt(G) and F̃ ′

2 := F̃2+c T rt(G), where c will be determined in Subsect.
5.2 (c ≈ c1 ≈ c2). We call this operation reducer subtraction. Regard the
possible cancellation occurring in F̃ ′

1 − F̃ ′
2 as the intrinsic cancellation.

The number 5 in Device 3 is determined from the following reason: Example
2 shows that we must monitor clones of likeness 10 or more, and it is impractical
to monitor clones of likeness 2 or less. With Devices 1 and 2, we can protect
the accuracy of the system from self-reduction completely; the number 5 for
specifying the clone in Device 3 is irrelevant to this protection. Device 3 is for
estimating the intrinsic cancellation; we explain the details in Sect. 5.

As for the intrinsic cancellation, authors of [2] and [10] defined the cancellation
in terms of syzygies. The computation of syzygies is quite costly in practice. On
the other hand, the reducer subtraction is not a costly operation (see Sect. 5 for
implementation), hence our method is practical.

5 Implementation Details

Although our ideas given above are simple, actual implementation of the Device
3 requires various detailed considerations.

5.1 Representation of Clones

In our current program, each input polynomial or S-polynomial generated is
numbered uniquely, say Fi (i ∈ IN), and the numbering is not changed if the
polynomial is reduced; if Fi is reduced to 0 then Fi is removed from the memory.
Suppose a polynomial Fi is reduced by Gj to become a clone of Gj . It is not
enough to save the index j to specify the clone; we must save the current Gj

because Gj itself might change later during the computation. Let the reduction
be F̃i := Fi − cjTjGj , where cj ∈ C and Tj is a power product. The multiplier
cj changes from the reduction to reduction, hence we must save the multipliers,
too. Therefore, we represent clones generated from Gj as follows.

1. Normalize Gj so that its leading coefficient is 1.
2. Represent each clone by a triplet 〈j, cj, TjGj〉 which we call clone-triplet.

Construct a clone-triplet each time Fi is reduced.

290 T. Sasaki and F. Kako

3. Save the clone-triplets for Fi into a list and attach the list to Fi. For example,

if Fi
Gj−→

Gj′
−→ · · ·, then the list is (· · · 〈j′, c′j′ , T ′

j′Gj′〉 〈j, cj , TjGj〉).

We normalize not only clones but also each polynomial appearing in the
computation so that its leading coefficient is 1, which makes the program-
ming easy. The normalization is made after each reduction (and S-polynomial
generation): F̃i := Fi − cjTjGj −→ F̃i := F̃i/lc(F̃i). Just after this normal-
ization, all the multipliers in the clone-triplet list for Fi must be changed as
〈j, cj , TjGj〉 → 〈j, cj/lc(F̃i), TjGj〉 (j=1, 2, . . .).

5.2 Reducer Subtraction

The reducer subtraction is performed as follows. Let F̃i = Fi − ciTG (i = 1, 2),
and suppose that self-reduction occurs in F̃1 − F̃2, as in Device 3 (self-reduction
occurs actually in Spol(F̃1, F̃2) or Lred(F̃1, F̃2), but we simplified the situation
by multiplying suitable power products to F̃1 and F̃2). By computing c as

c =
{

c1 if |c1| ≤ |c2|,
c2 if |c1| > |c2|,

(5.1)

we subtract −rt(G) from F̃i (i = 1, 2) as F̃i := F̃i + cT rt(G).
The above subtraction is for the reducer used at the last reduction (the left-

most reducer in the clone-triplet list of Fi). For other reducers, the subtraction
is made as follows; we explain only for the case that equalities in (2.5) hold.

Suppose F1 is reduced by G1, . . . , Gj as F1
G1−→ · · · Gj−→ F̃1 and we have

F̃1 := (· · · (F1 − c11T1G1) · · ·) − c1jTjGj .

In this case, the leading terms of rt(G1) may be eliminated and F̃1 may contain
only rt(· · · rt(G1) · · ·). Therefore, we scan terms of F̃1 and rt(G1) from highest
to lowest order, and determine which rt(· · · rt(G1) · · ·) is contained in F̃1. Then,
we subtract a suitable multiple of that rt(· · · rt(G1) · · ·) from F̃1 (and F̃2).

5.3 Estimating the Amount of Intrinsic Cancellation

The actual term cancellation is the sum of the intrinsic cancellations and can-
cellations due to self-reductions. Therefore, if we remove all the cancellations
due to self-reductions, then the rest must be the sum of intrinsic cancellations.
It should be mentioned that Device 3 will fail to remove small amounts of can-
cellations due to small self-reductions, because we neglect the clones of likeness
< 5. Therefore, the method explained in Device 3 will over-estimate the amount
of intrinsic cancellation.

To illustrate our technique we show the estimation of the intrinsic cancellation
in Example 2, in particular at the reduction step Spol(P3, P

′
2)

P3−→ P1−→ P4−→ · · ·,
where self-reduction by double clones occurs and we encounter main-term can-
cellation of O(1010).

Floating-Point Gröbner Basis Computation 291

Example 4. Intrinsic cancellation in Step 5 of Example 2.

Put Q1 = Lred(Lred(Lred(Spol(P3, P
′
2), P3), P1), P4) and let Lred(Q1, P

′
2) =

Q1 − Q2, where P ′
2 = clone(P1, P4). Below, underlines show figures which are

same in both Q1 and Q2 (or Q′
1 and Q′

2, or Q′′
1 and Q′′

2).

Q1 =+ #BE[1.1152418136789309558453405171e−1, 8.6e−28] y3

+ #BE[3.3457253711642806415804801040e−1, 3.7e−27] xy

− #BE[4.1613506289664168782840449950e−5, 1.1e−28] y2,

Q2 =+ #BE[1.1152418132002535431698179200e−1, 8.6e−28] y3

+ #BE[3.3457254396007606295094537600e−1, 3.7e−27] xy

− #BE[4.1612957039749613089747630908e−5, 1.1e−28] y2.

A multiple of −rt(P4) is subtracted from Q1 and Q2; Q′
1 ← Q1 and Q′

2 ← Q2:

Q′
1 =+ #BE[2.3290837408651847149108379154e−9, 8.6e−28] y3

− #BE[1.1194031410170599640717774130e−2, 1.1e−28] y2,

Q′
2 =+ #BE[2.2812159995976324552013022754e−9, 8.6e−28] y3

+ #BE[6.8436479987928973656039068264e−9, 3.7e−27] xy

+ #BE[1.1194030860920685085024681310e−2,− 1.1e−28] y2.

A multiple of −rt(P1) is subtracted from Q′
1 and Q′

2; Q′′
1 ← Q′

1 and Q′′
2 ← Q′

2:

Q′′
1 =+ #BE[2.3290837408651847149108379154e−9, 8.6e−28] y3,

Q′′
2 =+ #BE[2.2812159995976324552013022754e−9, 8.6e−28] y3

+ #BE[6.8436479987928973656039068264e−9, 3.7e−27] xy

+ #BE[5.4924991455569309281904242148e−10, 1.1e−28] y2.

We see O(102) cancellation occurs in Q′′
1 −Q′′

2 which we regard as the intrinsic
cancellation. ��

6 Concluding Remarks

For the page limit of LNCS, several parts were omitted in this paper. See [1] for
the omitted parts.

We showed that, restricting the reductions to leading-term reductions, we are
able to describe local steps of Gröbner basis computation by matrices and ana-
lyze self-reduction and intrinsic cancellation in terms of determinants (Theorem
1). Furthermore, we showed that the main-term cancellation due to self-reduction
causes no problem if we utilize big-efloats, as far as the self-reductions investi-
gated in Sect. 2 are concerned (Theorem 2). We are now trying to prove that
any self-reduction causes no problem.

Our analysis suggests us that the cancellation errors will be decreased largely
if self-reduction is avoided as far as possible. We are now developing a program
package based on this suggestion.

Finally, the authors acknowledge anonymous referees for valuable comments.

292 T. Sasaki and F. Kako

References

1. Sasaki, T., Kako, F.: Floating-point Gröber Basis Computation with Ill-
conditionedness Estimation. Technical Report of Univ. of Tsukuba, in (December
2007), http://www.math.tsukuba.ac.jp/∼sasaki/papers/ASCM2007

2. Bodrato, M., Zanoni, A.: Intervals, syzygies, numerical Gröbner bases: a mixed
study. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS,
vol. 4194, pp. 64–76. Springer, Heidelberg (2006)

3. Collins, J.E.: Subresultant and reduced polynomial remainder sequence. J.
ACM 14, 128–142 (1967)

4. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, New
York (1997)

5. Fortuna, E., Gianni, P., Trager, B.: Degree reduction under specialization. J. Pure
Appl. Algebra 164, 153–164 (2001)

6. Gonzalez-Vega, L., Traverso, C., Zanoni, A.: Hilbert stratification and parametric
Gröber bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005.
LNCS, vol. 3718, pp. 220–235. Springer, Heidelberg (2005)

7. Kako, F., Sasaki, T.: Proposal of “effective” floating-point number. Preprint of
Univ. Tsukuba (May 1997) (unpublished)

8. Kondratyev, A., Stetter, H.J., Winkler, S.: Numerical computation of Gröbner
bases. In: Proceedings of CASC 2004 (Computer Algebra in Scientific Computing),
St. Petersburg, Russia, pp. 295–306 (2004)

9. Mourrain, B.: Pythagore’s dilemma, symbolic-numeric computation, and the bor-
der basis method. In: Symbolic-Numeric Computations (Trends in Mathematics),
pp. 223–243. Birkhäuser Verlag, Basel (2007)

10. Sasaki, T., Kako, F.: Computing floating-point Gröbner base stably. In: Proceed-
ings of SNC 2007 (Symbolic Numeric Computation), London, Canada, pp. 180–189
(2007)

11. Shirayanagi, K.: An algorithm to compute floating-point Gröbner bases. In:
Mathematical Computation with Maple V. Ideas and Applications, pp. 95–106.
Birkhäuser, Basel (1993)

12. Shirayanagi, K.: Floating point Gröbner bases. Mathematics and Computers in
Simulation 42, 509–528 (1996)

13. Shirayanagi, K., Sweedler, M.: Remarks on automatic algorithm stabilization. J.
Symb. Comput. 26, 761–765 (1998)

14. Stetter, H.J.: Stabilization of polynomial systems solving with Gröbner bases. In:
Proceedings of ISSAC 1997 (Intern’l Symposium on Symbolic and Algebraic Com-
putation), pp. 117–124. ACM Press, New York (1997)

15. Stetter, H.J.: Numerical Polynomial Algebra. SIAM Publ., Philadelphia (2004)
16. Stetter, H.J.: Approximate Gröbner bases – an impossible concept? In: Proceedings

of SNC 2005 (Symbolic-Numeric Computation), Xi’an, China, pp. 235–236 (2005)
17. Traverso, C.: Syzygies, and the stabilization of numerical Buchberger algorithm.

In: Proceedings of LMCS 2002 (Logic, Mathematics and Computer Science), RISC-
Linz, Austria, pp. 244–255 (2002)

18. Traverso, C., Zanoni, A.: Numerical stability and stabilization of Gröbner basis
computation. In: Proceedings of ISSAC 2002 (Intern’l Symposium on Symbolic
and Algebraic Computation), pp. 262–269. ACM Press, New York (2002)

19. Weispfenning, V.: Gröbner bases for inexact input data. In: Proceedings of CASC
2003 (Computer Algebra in Scientific Computing), Passau, Germany, pp. 403–411
(2003)

http://www.math.tsukuba.ac.jp/~sasaki/papers/ASCM2007

The Maximality of the Dixon Matrix on

Corner-Cut Monomial Supports

Eng-Wee Chionh

School of Computing, National University of Singapore
Computing 1, #03-68, Law Link, Singapore 117590

chionhew@comp.nus.edu.sg
http://www.comp.nus.edu.sg/∼chionhew

Abstract. It has been established that the bivariate Dixon matrix per-
sists to be the exact resultant when there are at most two exposed points
at each corner of a corner-cut support; but it becomes singular when there
are four or more exposed points at any of the corners. For the remaining
case of three or fewer exposed points at each of the corners, it is observed
that the Dixon matrix is maximal but its determinant is a multiple of
the resultant with a priori known bracket powers as the extraneous fac-
tors. The maximality of the Dixon matrix for the three-or-fewer exposed
points case has been established mechanically for the special situation
in which the excess degree is unity when there are three exposed points
at a corner. This paper presents a greatly simplified mechanical proof so
that its validity can be easily verified.

Keywords: Dixon matrix, corner-cut monomial supports, maximality,
mechanical proof.

1 Introduction

The resultant is a remarkable tool for eliminating variables from a system of
polynomial equations [11]. It distinguishes itself among the elimination methods
such as Groebner bases and Wu-Ritt triangular systems in two important as-
pects: availability of an explicit compact formula and computational efficiency.
The geometry of the monomial support of the system of polynomial equations
determines the construction of the resultant. The Macaulay quotient resultant
works for total degree polynomial systems with a triangular monomial support.
The Dixon determinant applies for multi-degree polynomial systems with a rect-
angular monomial support. In computer geometry modeling and processing, re-
sultants offer themselves as a natural means for converting the parametric shape
representation to the implicit shape representation, a process known as implici-
tization. In the context of implicitization, the role of support geometry is all the
more conspicuous — the Macaulay quotient for triangular patches and the Dixon
determinant for rectangular patches. However, for multi-sided toric patches [9],
both the Macaulay quotient and the Dixon determinant usually fail because in
general toric patches are built on corner-cut monomial supports (rectangular sup-
ports with some monomial points removed around the support corners). These

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 293–306, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.comp.nus.edu.sg/~chionhew

294 E.-W. Chionh

missing monomial points introduce base points that are not accounted for by the
Dixon construction. But fortunately the Dixon method adapts to fit corner-cut
monomial supports if the cutting is not too severe. The cutting severity can be
quantified by counting what is called exposed points of the corner-cut monomial
support at each of its four corners. The following diagrams show respectively a
total degree 3 triangular support, a bicubic 3 × 3 rectangular support, a corner-
cut 3×3 pentagonal support with 1, 3, 2, 3 exposed points at the corners, and a
corner-cut 3× 3 hexagonal support with 3, 1, 3, 1 exposed points at the corners.

� � � �

� � �

� �

�

�
�

�
�

�
�

� � � �

� � � �

� � � �

� � � �

�

�

�

�

�

�

�

�

� �
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

Currently the findings and observations of the effect of exposed points are as
follows.

1. If the number of exposed points is at most two at each of the corners of the
monomial support, the Dixon determinant is the exact resultant [2].

2. If the number of exposed points is four or more at any of the corners of the
monomial support, the Dixon matrix is singular so its determinant vanishes
[12].

3. If the number of exposed points is at most three at any of the corners of the
bidegree m×n monomial support, it is conjectured [6] that the resultant is

Conjecture 1
|D|

Bε00
00 Bεm0

m0 Bεmn
mn Bε0n

0n

, (1)

where Bμν is the bracket corresponding to the three exposed points at corner
(μ, ν) ∈ {(0, 0), (m, 0), (m, n), (0, n)}, otherwise it is unity; εμν is the excess
degree at corner (μ, ν).

The conjecture is proved partially [7,8] — it is true when the excess degree
εμν is unity at corner (μ, ν). A crucial step in these proofs is establishing the
maximality of the Dixon matrix. The proofs given in [7,8] are mechanical. A
Maple program [1] is run to verify that certain rows or columns are independent
under various at-most-three exposed point configurations. The contribution of
this paper is to replace the complicated exhaustive verification mechanical proof
with a greatly simplified mechanical proof which can be easily verified analyti-
cally. The simplification is made possible with the use of some very simple entry
formulas for rows and columns of the Dixon matrix corresponding to exposed
points in the monomial support.

The rest of the paper develops as follows. Section 2 discusses monomial sup-
port structures and defines exterior points and exposed points. Section 3 reviews
the Dixon construction in the setting of monomial support. Section 4 presents
the simplification effects of exterior and exposed points on the Dixon matrix.

The Maximality of the Dixon Matrix on Corner-Cut Monomial Supports 295

Section 5 explains excess degrees and their role in formulating quotient Dixon
resultants. Section 6 gives the maximality proof for corner-cut monomial sup-
ports with at most three exposed points at each of the four corners. Section 7
concludes the paper with some discussions.

2 The Structure of Cornet-Cut Monomial Supports

This section defines rectangular lattice sets, monomial supports and their bide-
gree hulls, exterior points, and exposed points of a monomial support.

2.1 Rectangular and Arbitrary Lattice Sets

Let Z be the set of integers and R be the set of reals. The set of lattice points
is Z × Z, a subset of the Euclidean plane R × R.

It is very convenient to denote a rectangular lattice set whose sides are parallel
to the axes with any pair of diagonally opposite vertices:

{(x, y) ∈ Z × Z : i ≤ x ≤ k, j ≤ y ≤ l} = (i, j)..(k, l) = (k, l)..(i, j) (2)
= (i, l)..(k, j) = (k, j)..(i, l) (3)

where (i, j) is the bottom left corner and (k, l) is the top right corner. In partic-
ular, the rectangular lattice set (0, 0)..(m, n) is denoted Smn; that is,

Smn = (0, 0)..(m, n) = (m, n)..(0, 0) = (0, n)..(m, 0) = (m, 0)..(0, n). (4)

We denote the set of four corners of Smn as

Kmn = {(0, 0), (m, 0), (m, n), (0, n)}. (5)

2.2 Bidegree Hulls

For a lattice set S ⊆ Z × Z, the bidegree hull of S is (x0, y0)..(x1, y1) in which

x0 = min{x : (x, y) ∈ S}, y0 = min{y : (x, y) ∈ S}, (6)
x1 = max{x : (x, y) ∈ S}, y1 = max{y : (x, y) ∈ S}. (7)

For the rest of the paper, we shall write

S 1 Smn (8)

to emphasize that Smn is the bidegree hull of the lattice set S.

2.3 Exterior Points and Exposed Points

Consider a lattice set S 1 Smn. A point (x, y) ∈ Smn \ S is an exterior point of
S with respect to the corner (μ, ν) ∈ Kmn if

((x, y)..(μ, ν)) ∩ S = ∅. (9)

296 E.-W. Chionh

A point (x, y) ∈ S is an exposed point of S with respect to the corner (μ, ν) if

((x, y)..(μ, ν)) ∩ S = {(x, y)}. (10)

The sets of exterior and exposed points of S 1 Smn with respect to the corner
(μ, ν) ∈ Kmn will be denoted as Eμν and Xμν respectively. Clearly, we have

X00 ∪ Xm0 ∪ Xmn ∪ X0n ⊆ S ⊆ Smn \ (E00 ∪ Em0 ∪ Emn ∪ E0n). (11)

The structure of S with respect to its bidegree hull Smn is also discussed
in [3].

2.4 Presentation Convention

In illustrations exposed points will be drawn as “•” and points of S that are not
exposed will be drawn as “◦”. For ease of association to the corners, the sets of
exterior and exposed points of a support will be presented respectively in the
form

E0n Emn

E00 Em0

,
X0n Xmn

X00 Xm0

. (12)

2.5 An Example

For example, consider the lattice set

S = {(0, 0), (5, 0), (1, 1), (3, 1), (6, 1), (2, 2), (5, 2), (3, 3), (4, 3)} 1 S63. (13)

�

�

�

� �

�

�

�

�

The sets of exterior points are

{(0, 1), (0, 2), (1, 2), (0, 3), (1, 3), (2, 3)} {(6, 2), (5, 3), (6, 3)}

∅ {(6, 0)}
. (14)

The sets of exposed points are

{(0, 0), (1, 1), (2, 2), (3, 3)} {(6, 1), (5, 2), (4, 3)}

{(0, 0)} {(5, 0), (6, 1)}
. (15)

The Maximality of the Dixon Matrix on Corner-Cut Monomial Supports 297

3 The Dixon Construction

The original Dixon construction [5] is meant for rectangular supports Smn. But
it is straightforward to adapt it to any lattice set S 1 Smn.

3.1 The Dixon Polynomial P (S) for a Support S

Given a lattice set S 1 Smn, the Dixon polynomial for S is

P (S) =

∣∣∣∣∣∣∣∣∣∣

f(s, t) g(s, t) h(s, t)

f(α, t) g(α, t) h(α, t)

f(α, β) g(α, β) h(α, β)

∣∣∣∣∣∣∣∣∣∣

(s − α)(t − β)
(16)

=

∑
(i,j),(k,l),(p,q)∈S(i, j, k, l, p, q)sitj+lαk+pβq

(s − α)(t − β)
(17)

where f , g, h are polynomials defined on S:

f(s, t) =
∑

(i,j)∈S

fijs
itj , g(s, t) =

∑

(i,j)∈S

gijs
itj , h(s, t) =

∑

(i,j)∈S

hijs
itj ; (18)

and the 3 × 3 determinant (i, j, k, l, p, q) consisting of coefficients of f , g, h, is
called a bracket:

(i, j, k, l, p, q) =

∣∣∣∣∣∣∣∣∣∣

fij gij hij

fkl gkl hkl

fpq gpq hpq

∣∣∣∣∣∣∣∣∣∣

. (19)

When there is no risk of confusion we further abbreviate a bracket as

ijklpq = (i, j, k, l, p, q). (20)

3.2 The Dixon Matrix D(S) for a Support S

The Dixon matrix for S is the coefficient matrix D(S) of P (S) with row indices
comprising monomials in s, t and column indices comprising monomials in α, β:

P (S) =
[

· · · sσtτ · · ·
]

D(S)
[

· · · αaβt · · ·
]T

(21)

298 E.-W. Chionh

3.3 The Row Support R(S) and Column Support C(S) for the
Dixon Matrix D(S)

The set of exponents (σ, τ) in the row indices, R(S), is called the row support of
D(S) and the set of exponents (a, b) in the column indices, C(S), is called the
column support of D(S). In general, we have

R(Smn) = Sm−1,2n−1, (22)
C(Smn) = S2m−1,n−1. (23)

3.4 An Example

For example, we have

P (S11) =
[

1 t

]
⎡

⎢⎣
001001 001011

001101 011011

⎤

⎥⎦
[

1 α

]T
. (24)

Furthermore, the row and column supports are

R(S11) = S01, (25)
C(S11) = S10. (26)

4 Exterior Points Simplify the Dixon Matrix

When exterior points of a support S 1 Smn exist, D(S) is obtained from D(Smn)
by removing some of its rows and columns and reducing some brackets of its
entries to zero. The precise simplification effects of exterior points are described
in this section.

4.1 Translating Points of S to Points of R(S) and C(S)

First we introduce the notations (x, y)′μν and (x, y)′′μν concerning translating a
point (x, y) with respect to a corner (μ, ν) ∈ Kmn. Let

(x, y)′0n = (x, y + n − 1) (x, y)′mn = (x − 1, y + n − 1)

(x, y)′00 = (x, y) (x, y)′m0 = (x − 1, y)
, (27)

and

(x, y)′′0n = (x, y − 1) (x, y)′′mn = (x + m − 1, y − 1)

(x, y)′′00 = (x, y) (x, y)′′m0 = (x + m − 1, y)
. (28)

A set A ⊆ Z × Z is translated similarly element-wise with the corner subscript
and ′, ′′ notations:

A′
μν = {(x, y)′μν : (x, y) ∈ A}, A′′

μν = {(x, y)′′μν : (x, y) ∈ A}. (29)

The Maximality of the Dixon Matrix on Corner-Cut Monomial Supports 299

4.2 Exterior Points Eliminate Rows and Columns

The following theorem [12] says that exterior points simplifies the Dixon matrix
by eliminating rows and columns corresponding to exterior points.

Theorem 1. Let Eμν , (μ, ν) ∈ Kmn, be the sets of exterior points of the support
S 1 Smn. Then

R(S) = Sm−1,2n−1 \ (E′
00 ∪ E′

m0 ∪ E′
mn ∪ E′

0n) (30)

C(S) = S2m−1,n−1 \ (E′′
00 ∪ E′′

m0 ∪ E′′
mn ∪ E′′

0n) (31)

Furthermore,

|R(S)| = |C(S)| = 2mn − |E00| − |Em0| − |Emn| − |E0n|. (32)

4.3 Exterior Points Eliminate Brackets

The following theorem [12,13] gives explicit formulas for the entries of rows and
columns of D(S) corresponding to exposed points.

Theorem 2. Let Xμν , (μ, ν) ∈ Kmn, be the sets of exposed points of the support
S 1 Smn. Let the Dixon polynomial on S be

P (S) =
∑

(σ,τ)∈R(S),(a,b)∈C(S)

Δσ,τ,a,bs
σtταaβb (33)

and (x, y) ∈ Xμν .
For (x′, y′) = (x, y)′μν , the entry Δx′,y′,a,b, for any (a, b) ∈ C(S) is respectively

−
m∑

k=0

(x, y, k, n, a + 1 − k, b)
m∑

k=0

(x, y, k, n, a − k, b)

m∑

k=0

(x, y, k, 0, a + 1 − k, b + 1) −
m∑

k=0

(x, y, k, 0, a − k, b + 1)

(34)

For (x′′, y′′) = (x, y)′′μν , the entry Δσ,τ,x′′,y′′ , for any (σ, τ) ∈ R(S) is respec-
tively

−
n∑

l=0

(σ + 1, τ − l, 0, l, x, y)
n∑

l=0

(σ, τ − l, m, l, x, y)

n∑

l=0

(σ + 1, τ + 1 − l, 0, l, x, y) −
n∑

l=0

(σ, τ + 1 − l, m, l, x, y)

(35)

300 E.-W. Chionh

4.4 Examples

The Dixon matrix D(S22) is an 8 × 8 matrix containing a total of 144 brackets.
Let

S1 = S22 \ {(0, 0), (0, 2), (2, 0), (2, 2)}. (36)

The Dixon matrix D(S1) is a 4× 4 matrix containing a total of 12 brackets. Let

S2 = S1 \ {(1, 1)}. (37)

The Dixon matrix D(S2) is a 4× 4 matrix containing a total of 8 brackets. Note
that removing the point (1, 1) from S1 does not decimate rows nor columns, it
only reduces the number of brackets.

5 Excess Degrees and Quotient Dixon Resultants

The theories of sparse resultants and BKK degree bound [4] tell that the degree
d of the sparse resultant in the coefficients of each of the polynomials f , g,
h defined on S is NV(Ŝ), where Ŝ is the convex hull of S and NV(X) is the
normalized volume (twice the Euclidean area) of the set X . Thus we have

d = 2mn −
∑

(μ,ν)∈Kmn

δμν (38)

where δμν is the normalized volume chipped off from Smn by the boundary of Ŝ
at corner (μ, ν) ∈ Kmn. But

dim(D(S)) = 2mn −
∑

(μ,ν)∈Kmn

|Eμν |. (39)

Consequently,

d = dim(D(S)) −
∑

(μ,ν)∈Kmn

(δμν − |Eμν |), (40)

= dim(D(S)) −
∑

(μ,ν)∈Kmn

εμν , (41)

where the difference
εμν = δμν − |Eμν | (42)

is called the excess degree at corner (μ, ν).
The following theorems state the value of εμν for |Xμν | ≤ 2 and |Xμν | = 3.

The proof can be found in [2] and [12] respectively.

Theorem 3. For any corner (μ, ν) ∈ Kmn, if |Xμν | ≤ 2, then εμν = 0.

The Maximality of the Dixon Matrix on Corner-Cut Monomial Supports 301

Theorem 4. Let the three exposed points at corner (μ, ν) ∈ Kmn be respectively

(0, y), (e, f), (x, n) (m, y), (e, f), (x, n)

(0, y), (e, f), (x, 0) (m, y), (e, f), (x, 0)
. (43)

The excess degree at corner (μ, ν) ∈ Kmn is

εμν =
min(NV((μ, ν)..(e, f)),NV((e, f)..(x, y)))

2
. (44)

The following diagram shows the possible (e, f) positions and the attending
rectangular sets ε′μν = (μ, ν)..(e, f), ε′′μν = (e, f)..(x, y) at the four corners.

� �

��

ε′00

ε′′00
ε′′m0

ε′m0

ε′′mn

ε′mn

ε′′0n

ε′0n

Note that for any (μ, ν) ∈ Kmn, |Xμν | = 1 when (x, y) = (μ, ν) and |Xμν | = 2
when (x, y) = (e, f). In either case, εμν = 0 by Theorem 4. Thus Theorem 3 is
a special case of Theorem 4.

6 Supports with Three or Fewer Exposed Points Preserve
Maximality

Conjecture 1 guesses that when |Xμν | ≤ 3 for all (μ, ν) ∈ Kmn, D(S) is maximal,
that is, |D(S)|
= 0. The conjecture is trivially true when εμν = 0 for all (μ, ν) ∈
Kmn. This is because in this case we have |Xμν | ≤ 2 for all (μ, ν) ∈ Kmn [2].
This section proves that the conjecture is true for the special case when εμν ≤ 1
for all (μ, ν) ∈ Kmn.

In the following discussions, we adopt the convention that, for any set X ,

X1 = X, and X0 = ∅. (45)

302 E.-W. Chionh

6.1 All Possible Exposed Points

Given that |Xμν | ≤ 3 and εμν ≤ 1 for all (μ, ν) ∈ Kmn, by Theorems 3 and 4,
the exposed points of S 1 Smn must be as follows (the notation “|′′ means “or”):

X00 = {(0, 0)} (46)
| {(b1, 0), (0, l1)} (47)
| {(b1, 0), (1, 1), (0, l1)} (48)
| {(b1, 0), (b1 − 1, l1 − 1), (0, l1)}; (49)

Xm0 = {(m, 0)} (50)
| {(b2, 0), (m, r1)} (51)
| {(b2, 0), (m − 1, 1), (m, r1)} (52)
| {(b2, 0), (b2 + 1, r1 − 1), (m, r1)}; (53)

Xmn = {(m, n)} (54)
| {(t2, n), (m, r2)} (55)
| {(t2, n), (m − 1, n − 1), (m, r2)} (56)
| {(t2, n), (t2 + 1, r2 + 1), (m, r2)}; (57)

X0n = {(0, n)} (58)
| {(0, l2), (t1, n)} (59)
| {(t1, n), (1, n − 1), (0, l2)} (60)
| {(t1, n), (t1 − 1, l2 + 1), (0, l2)}. (61)

The following figure displays all these possible exposed point configurations.

� �

��

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

b1 b2

r1

r2

t1 t2

l1

l2

The Maximality of the Dixon Matrix on Corner-Cut Monomial Supports 303

6.2 Columns Indexed by Exposed Points in the Column Support

To prove that D(S) is maximal it suffices to prove that columns of D(S) indexed
by the following indices are linearly independent.

CX = ((X ′′
00)

ε00 ∪ (X ′′
m0)

εm0 ∪ (X ′′
mn)εmn ∪ (X ′′

0n)ε0n) ∩ C(S), (62)

This is because the columns of D(S) indexed by

X ′′
μν ∩ C(S) (63)

where |Xμν | = 3 produces the bracket factor B
εμν
μν = Bμν corresponding to

the three exposed points at corner (μ, ν) [14]. Thus a maximal minor M of
D(S) containing these columns produces the factor Bε00

00 Bεm0
m0 Bεmn

mn Bε0n
0n . But a

maximal minor is a multiple of the resultant for the support S [10], by Equation
(41) we have

dim(M) −
∑

(μ,ν)∈Kmn

εμν ≥ dim(D(S)) −
∑

(μ,ν)∈Kmn

εμν . (64)

Consequently dim(M) =dim(D(S)) and D(S) is maximal.

6.3 Corresponding Row Indices

The four sets of corresponding row indices are given as follows [6].

Row Indices R00:
R00 = (P, (b1 − 1, l1 − 1), Q) (65)

where

P =

⎧
⎪⎨

⎪⎩

(0, l1), (1, 1) ∈ X00;

(b1 − 2, 2l1 − 2), (b1 − 1, l1 − 1) ∈ X00;
(66)

and

Q =

⎧
⎪⎨

⎪⎩

(b1 − 1, n − 1), |X0n| = 1;

(t1 − 1, n + l2 − 1), |X0n| > 1.

(67)

Row Indices Rm0:
Rm0 = {P, (b2, r1 − 1), Q} (68)

where

P =

⎧
⎪⎨

⎪⎩

(m − 1, r1), (m − 1, 1) ∈ Xm0;

(b2 + 1, 2r1 − 2), (b2 + 1, r1 − 1) ∈ Xm0;
(69)

and

Q =

⎧
⎪⎨

⎪⎩

(b2, n − 1), |Xmn| = 1;

(t2, n + r2 − 1), |Xmn| > 1.

(70)

304 E.-W. Chionh

Row Indices Rmn:

Rmn = {P, (t2, r2 + n), Q} (71)

where

P =

⎧
⎪⎨

⎪⎩

(m − 1, n + r2 − 1), (m − 1, n − 1) ∈ Xmn;

(t2 + 1, 2r2 + 1), (t2 + 1, r2 + 1) ∈ Xmn;
(72)

and

Q =

⎧
⎪⎨

⎪⎩

(t2, n), |Xm0| = 1;

(b2, r1), |Xm0| > 1.

(73)

Row Indices R0n:

R0n = {P, (t1 − 1, l2 + n), Q} (74)

where

P =

⎧
⎪⎨

⎪⎩

(0, n + l2 − 1), (1, n − 1) ∈ X0n;

(t1 − 2, 2l2 + 1), (t1 − 1, l2 + 1) ∈ X0n;
(75)

and

Q =

⎧
⎪⎨

⎪⎩

(t1 − 1, n), |X00| = 1;

(b1 − 1, l1), |X00| > 1.

(76)

Let the union of these sets of row indices be

RX = (Rε00
00 ∪ Rεm0

m0 ∪ Rεm0
mn ∪ Rε0n

0n) ∩ R(S). (77)

6.4 Proving the Maximality of D(S)

As discussed previously, to establish the maximality of D(S) we need only show
that in general the columns of D(S) indexed by CX of Equation (62) are linearly
independent under all possibilities of Xμν , (μ, ν) ∈ Kmn. This is so if a square
submatrix of these columns is non-singular. To this end consider the submatrix
M indexed by row indices RX and column indices CX . The submatrix M can
be obtained by computing its entries with the column entry formulas (35). It
is then readily verified that either the submatrix M is triangular with non-zero
diagonal entries or its determinant is non-zero. Consequently M is non-singular.

The Maximality of the Dixon Matrix on Corner-Cut Monomial Supports 305

That is, the columns indexed by CX are linearly independent in general and thus
D(S) is maximal in general.

6.5 Provision for Degeneracies

Using column entry formulas (35) or otherwise, it is easy to check that the column
corresponding to an exposed point (x, y) is zero if (x, y) is the only exposed point
of S 1 Smn on a vertical edge of Smn. For example, if the sets of exposed points
are

{(t1, n), (1, n − 1), (0, l)} {(t1, n), (m − 1, n − 1), (m, r)}

{(b1, 0), (1, 1), (0, l)} {(b2, 0), (m − 1, 1), (m, r)}
, (78)

then (0, l) is the only exposed point on the edge x = 0 and (m, r) is the only
exposed point on the edge x = m. In this case |CX | = 8 and the 8×8 submatrix
indexed by RX (without the 3rd, 6th, 9th, and 12th rows) and CX is an diagonal
matrix with diagonal entries

B1,−B1,−B2, B2, B3,−B3,−B4, B4 (79)

where the brackets are

B1 = (b1, 0, 1, 1, 0, l), (80)
B2 = (b2, 0, m − 1, 1, m, r), (81)
B3 = (t2, n, m − 1, n − 1, m, r), (82)
B4 = (t1, n, 1, n − 1, 0, l). (83)

That is, for any (μ, ν) ∈ Kmn, if |Xμν | = 3 but |X ′′
μν ∩ C(S)| = 2, there is

degeneracy and the submatrix should be formed by omitting the point Q from
the row indices in Rμν

7 Conclusions

With the aid of column entry formulas (35), it is straightforward to show that
the columns listed in (62) are linearly independent in general because a square
submatrix of these columns is non-singular. Consequently, arguing using the
degree of the sparse resultant and the fact that a maximal minor of D(S) is a
multiple of the sparse resultant, we are able to show that D(S) is maximal in
general when |Xμν | ≤ 3 and εμν ≤ 1 for any (μ, ν) ∈ Kmn.

In the proof the theories of sparse resultants and BKK bounds, and the fact
that a maximal minor is a multiple of the resultant are needed. It would be
nice if the maximality of D(S) can be established directly using elementary and
constructive means in future.

306 E.-W. Chionh

References

1. Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monogan, M.B., Watt,
S.M.: Maple V language reference manual. Springer, New York (1991)

2. Chionh, E.-W.: Rectangular corner-cutting and Dixon A-resultants. Journal of
Symbolic Computation 31, 651–669 (2001)

3. Chtcherba, A.D., Kapur, D.: Resultants for unmixed bivariate polynomial systems
using the Dixon formulation. Journal of Symbolic Computation 38, 915–958 (2004)

4. Cox, D., John, L., Donal, O.: Using Algebraic Geometry. Springer, New York (1998)
5. Dixon, A.L.: The eliminant of three quantics in two independent variables. Proc.

London Math. 6, 49–96, 473–492 (1908)
6. Foo, M.-C.: Dixon A-resultant formulas. Master thesis, National University of Sin-

gapore (2003)
7. Foo, M.-C., Chionh, E.-W.: Corner point pasting and Dixon A-resultant quotients.

In: Asian Symposium on Computer Mathematics, pp. 114–127 (2003)
8. Foo, M.-C., Chionh, E.-W.: Corner edge cutting and Dixon A-resultant quotients.

Journal of Symbolic Computation 37, 101–119 (2004)
9. Krasauska, R.: Toric surface patches. Advances in Computational Mathematics 17,

89–113 (2002)
10. Emiris, I.Z., Mourrain, B.: Matrices in elimination theory. Journal of Symbolic

Computation 28, 3–44 (1999)
11. van der Waerden, B.L.: Modern Algebra, ch. XI, vol. II. Ungar Pub. Co., New York

(1950)
12. Xiao, W.: Loose entry formulas and the reduction of Dixon determinant entries.

Master thesis, National University of Singapore (2004)
13. Xiao, W., Chionh, E.W.: Formal Power Series and Loose Entry Formulas for the

Dixon Matrix. In: Computer Algebra and Geometric Algebra with Applications.
Springer, Heidelberg (2005)

14. Xiao, W., Chionh, E.W.: Bracket Producing Rows and Columns of the Dixon
Determinant. In: Proceedings of the 8th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC 2006), pp. 164–170.
IEEE, Los Alamitos (2006)

Properties of Ascending Chains for

Partial Difference Polynomial Systems�

Gui-Lin Zhang and Xiao-Shan Gao

Key Laboratory of Mathematics Mechanization
Institute of Systems Science, AMSS, Chinese Academy of Sciences

xgao@mmrc.iss.ac.cn, zhangguil@amss.ac.cn

Abstract. A characteristic set theory for partial difference polynomial
systems is proposed. We introduce the concept of coherent and regular
ascending chains and prove that a partial difference ascending chain is
the characteristic set of its saturation ideal if and only if it is coherent
and regular. This gives a method to decide whether a polynomial belongs
to the saturation ideal of an ascending chain. We introduce the concept
of strongly irreducible ascending chains and prove that a partial differ-
ence ascending chain is the characteristic set of a reflexive prime ideal
if and only if it is strongly irreducible. This gives a simple and precise
representation for reflexive prime ideals.

Keywords: Ascending chain, characteristic set, coherent chain, regu-
lar chain, irreducible chain, partial difference polynomial.

1 Introduction

The characteristic set method is a fundamental tool for studying systems of alge-
braic or algebraic differential equations. The method could be used to transform
an equation system into so-called characteristic sets, which are systems of equa-
tions in certain triangular form also called ascending chains, or simply chains.
This allows people to give the dimension, the order, and the degree of a solution
set over an algebraically or differentially closed field. Also, triangular equation
systems are ready for symbolic and numerical solutions.

The characteristic set method was introduced by Ritt in the 1930s as an
algebraic tool to study differential equations [17, 19]. However, the algorithmic
study of the characteristic set was in stagnation for quite a long time until Wu’s
work on zero decomposition for polynomial equations and automated geometry
theorem proving appeared in the late 1970s [23,24,25]. Since then, many efficient
algorithms and new properties for characteristic sets were proposed for algebraic
equation systems and differential equation systems [1,2,4,5,6,7,8,9,11,12,16,22,
27]. In [13, 14, 15], a characteristic set method was also introduced for ordinary
difference equation systems and ordinary differential-difference equation systems.

In this paper, we develop a characteristic set theory for partial difference poly-
nomial systems. We obtain three main results. First, we introduce the concept
� Supported by a National Key Basic Research Project of China (2004CB318000).

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 307–321, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

308 G.-L. Zhang and X.-S. Gao

of coherent chains and this leads to a normal representation of the difference
polynomials in the saturation ideal of a coherent chain. Second, we introduce
the concept of regular chains and prove that a partial difference chain is the
characteristic set of its saturation ideal if and only if it is coherent and regular.
We also prove that the saturation ideal of a partial difference regular and coher-
ent chain is the union of some algebraic saturation ideals. This gives a method
to decide whether a polynomial belongs to the saturation ideal of a chain. Third,
we introduce the concept of strongly irreducible chains and prove that a partial
difference chain is the characteristic set of a reflexive prime ideal if and only if it
is strongly irreducible. This gives a simple and precise representation for prime
and reflexive prime ideals. These results are generalizations of similar results
about algebraic polynomial systems [2], differential systems [6,16], and ordinary
difference systems [13,14]. Due to the complicated structure of partial difference
polynomials, our generalization is nontrivial and there still exist many problems
unsolved in the partial difference case. The major open problem is to give a
constructive criterion for regular and non-trivial chains. For details, please see
Section 4.

In [18,20,26], the characteristic set of partial differential and difference poly-
nomial systems was defined and used to prove the Noetherian property of the
partial differential and difference polynomial ring. Dimension polynomials for
differential and difference polynomial ideals were also studied in [18, 26]. But,
the results presented in this paper for regular and irreducible chains were not
given in these papers.

The rest of this paper is organized as follows. In Section 2, we present the no-
tations and known results needed in this paper. In Sections 3, 4, and 5, we prove
the properties of coherent, regular, and strongly irreducible chains respectively.
In Section 6, we give the zero decomposition theorem and algorithm. In Section
7, we conclude the paper.

2 Preliminaries

We will introduce the notions and preliminary properties needed in this paper.
For the general theory of difference algebra, please refer to [3, 10, 18].

2.1 Difference Polynomials and Difference Chains

Let K be a field of characteristic zero. We say that K is an inversive partial
difference field with transforming operators {σ1, . . . , σm} over K, if {σ1, . . . , σm}
are automorphisms of K onto K which commute pairwise on the elements of K.
Let

Tσ = {σo1
1 . . . σom

m |j = 1, . . . , m, oj ≥ 0}.

We regard Tσ as a free commutative monoid. The order of an element η =
σo1

1 . . . σom
m of Tσ is ord(η) = Σm

j=1oj . η is proper if ord(η)
= 0. The vector of an
element η ∈ Tσ is vec(η) = (i1, . . . , im) if η = σi1

1 . . . σim
m . For η1, η2 ∈ Tσ, η1 is a

Properties of Ascending Chains for Partial Difference Polynomial Systems 309

(proper) multiple transform of η2 or η2 is a (proper) factor transform of η1 if ∃
η ∈ Tσ such that η1 = ηη2 (ord(η)
= 0). It is denoted by η1 0 η2(η1 . η2).

Let X = {x1, . . . , xn} be a finite set of difference indeterminates over K and

TσX = {ηxi|η ∈ Tσ, i = 1, . . . , n}.

R = K{x1, . . . , xn} = K[TσX] denotes the ring of partial difference polynomials
in the indeterminates X with coefficients in K. For convenience, in this paper,
when we say polynomials, we mean partial difference polynomials, otherwise we
will point out clearly.

Let < be a total ordering over TσX defined as follows: ∀η, θ ∈ Tσ, 1 ≤ i, j ≤ n,
ηxi > θxj if i > j or i = j and ord(η) > ord(θ) or else ord(η) = ord(θ) and the
first nonzero element of vec(η)−vec(θ) is greater than zero. Let f be a polynomial
not in K, the leader of f is the highest element of TσX (w.r.t. <) that appears
in f , and we denote it by uf . We write f as a univariate polynomial in uf :

f = Idud
f + · · · + I0.

Id = init(f) is called the initial of f . Let uf = ηxi. Then i and xi are called the
class and leading variable of f , denoted as class(f) and lvar(f) respectively. We
define vec(ηxi) = vec(η) and vec(f, xj) = vec(η), if ηxj = max{τxj appears in
f}, vec(f) = vec(f, lvar(f)).

An n-tuple over K is of the form a = (a1, . . . , an), where the ai are selected
from some difference extension field of K. Let f ∈ K{X}. To substitute an n-tuple
a into f means to replace each of the ηxi occurring in f with the corresponding
ηai. Let P be a set of polynomials in K{X}. An n-tuple over K is called a
solution of the equation set P=0 if the result of substituting the n-tuple into
each polynomial of P is zero. We use Zero(P) to denote the set of solutions of
P = 0. Let f ∈ K{X}. It is easy to check that Zero(f) = Zero(ηf) ∀η ∈ Tσ. For
the sets of polynomials P and D, Zero(P/D) denotes the set of solutions of P = 0
which do not annihilate any polynomial of D.

Let g be a polynomial not in K. A polynomial f is said to be of less than g,
denoted as f < g, if uf < ug or (uf = ug) = u and deg(f, u) < deg(g, u). If
neither f < g nor g < f , we say that f and g are equivalent and we write f ≡ g.
A polynomial f is said reduced w.r.t. g if deg(f, ηug) < deg(g,ug), ∀η ∈ Tσ.

A subset A of R\K, where every element is reduced w.r.t. all the others, is
called an autoreduced set. A chain is an autoreduced set where the polynomials
are listed in the ascending ordering: A = A1 < A2 < · · · < Ap. It is easy to show
that every chain A in R = K{X} is a finite set.

If A = A1, . . . , Ap and B = B1, . . . , Bq are two chains, we say that A < B if
either there is some j ≤ min(p, q) such that Ai ≡ Bi for i < j and Aj < Bj , or
q < p and Ai ≡ Bi for i ≤ q. If neither A < B nor B < A, we say that A and
B are of the same order and we denote A ≡ B. The following result is a basic
property of chains (page 147 in [18]).

Lemma 1. A strictly decreasing sequence of chains A1 > A2 > A3 > · · · is
finite.

310 G.-L. Zhang and X.-S. Gao

If F ⊆ R, then the set of all the chains contained in F has a minimal element
according to Lemma 1, which is called a characteristic set of F and it is denoted
by CS(F). A polynomial f is reduced w.r.t. a chain if it is reduced to every
polynomial in the chain. The following results are easy to prove.

Lemma 2. If f
= 0 is reduced w.r.t. CS(F), then CS(F ∪ {f}) < CS(F).

Lemma 3. A chain A ⊂ P is a characteristic set of P if and only if there is no
nonzero polynomial in P which are reduced w.r.t. A.

A difference ideal is a subset I of R = K{x1, . . . , xn}, which is an algebraic
ideal in R and is closed under transforming. A difference ideal I is called reflexive
if ηf ∈ I implies f ∈ I for all η ∈ Tσ. Let S be a set of elements of R. The
difference ideal generated by S is denoted by [S]. Obviously, [S] is the set of all
linear combinations of the polynomials in S and their transforms. The ordinary
or algebraic ideal generated by S is denoted as (S). A difference ideal I of R is
called perfect if the presence in I of a product of transforms of an element f of R
implies f ∈ I. The perfect difference ideal generated by S is denoted as {S}. A
perfect ideal is always reflexive. A difference ideal I is called a prime difference
ideal if it is prime as an algebraic ideal.

Let A be a chain and IA the set of products of the initials of the polynomials
in A and their transforms. The saturation ideal of A is defined as follows

sat(A) = {f ∈ K{X} | ∃J ∈ IA, s.t. Jf ∈ [A]}.

2.2 Invertibility of Algebraic Polynomials

We will introduce some notations and results about invertibility of algebraic
polynomials w.r.t. an algebraic ascending chain. These results are given in [1,2,
5, 6].

Let A = A1, . . . , Am be a nontrivial triangular set in K[x1, . . . , xn] over a field
K of characteristic zero. Let yi be the leading variable of Ai, y = {y1, . . . , yp}
and u = {x1, . . . , xn} \ y. u is called the parameter set of A. We can denote
K[x1, . . . , xn] as K[u, y]. Ii is the initial of Ai. For a triangular set A, let IA
be the set of products of the initials of the polynomials in A. The algebraic
saturation ideal of a triangular set A is defined as follows

a-sat(A) = {f ∈ K[x1, . . . , xn] | ∃J ∈ IA, s.t.Jf ∈ (A)}.

Definition 4. Let A = A1, A2, . . . , Am be a nontrivial triangular set in K[u, y]
with u as the parameter set, and f ∈ K[u, y]. f is said to be invertible w.r.t. A if
(f, A1, . . . , As)∩K[u]
= {0} where s = class(f). A is called regular if the initials
of Ai are invertible w.r.t. A1, . . . , Ai−1.

Theorem 5. [2,6] Let A be a triangular set. Then A is a characteristic set of
a-sat(A) iff A is regular.

Lemma 6. [6] A finite product of polynomials which are invertible w.r.t. A is
also invertible w.r.t. A.

Properties of Ascending Chains for Partial Difference Polynomial Systems 311

Lemma 7. [6] A polynomial g is not invertible w.r.t. a regular triangular set A
iff there is a nonzero f in K[u, y] such that fg ∈ (A) and g is reduced w.r.t. A.

Lemma 8. [25] Let A be an irreducible triangular set. Then a polynomial g is
invertible w.r.t. A iff g
∈ a-sat(A).

3 Coherent Chains

For any chain A, after a proper renaming of variables, we could write it as the
following form:

A =

⎧
⎪⎪⎨

⎪⎪⎩

A1,1(u, y1), . . . , A1,k1(u, y1)
A2,1(u, y1, y2), . . . , A2,k2(u, y1, y2)
. . .
Ap,1(u, y1, . . . , yp), . . . , Ap,kp(u, y1, . . . , yp)

(1)

where lvar(Ai,j) = yi, u = {u1, . . . , uq} such that p+q = n, X = u
⋃

{y1, . . . , yp}.
For c = 1, . . . , p, let

Ac = Ac,1(u, y1, . . . , yc), . . . , Ac,kc(u, y1, . . . , yc) (2)

3.1 Prolongation of Chains

We will now introduce the prolongation of a chain, which is a key concept in our
theory. For instance, we will use this concept to define the pseudo-remainder of
a polynomials w.r.t. a chain.

For a set of polynomials P, we use LP to denote the set of leaders of the
polynomials in P. For ηxc ∈ Tσ, we use Dηxc to denote the set of θxc such that
θ is a factor of η. More precisely, we have:

LP = {ηxc ∈ TσX s.t. ∃ P ∈ P,uP = ηxc}.
Dηxc = {θxc ∈ TσX s.t. η 0 θ}.

We define the main variables and parameters of a chain A as follows.

MVA = {ηxc ∈ TσX s.t. ∃ A ∈ A,uA = θxc, and η 0 θ}.
PAA = TσX \ MVA.

For any finite set of polynomials P and a chain A, we say that AP is a pro-
longation of A w.r.t. P if it satisfies the following properties:

– AP ⊇ A is an algebraic triangular set under the ordering ≤ when all ηxi ∈
TσX are considered as independent variables.

– If A ∈ AP, then there exist a B ∈ A and an η ∈ Tσ such that A = ηB and
B has the lowest degree among all elements in {C|uA = uθC , C ∈ A}.

312 G.-L. Zhang and X.-S. Gao

– For any ηxc occurring in P∪AP, either ηxc ∈ PAA or there exists an A ∈ AP

such that uA = ηxc.

Intuitively speaking, AP is a finite subset of TσA such that each ηxi occurring
in P is either in PAA or a leader of a polynomial in AP. It is easy to show that
AP satisfies the following properties.

– The parameters of AP as an algebraic triangular set are all in PAA.
– A polynomial f is reduced w.r.t. A if and only if f is reduced w.r.t. Af in

the algebraic sense, where Af = A{f}.

The following algorithm can be used to compute a prolongation AP, for a
given chain A and a polynomial set P.

Algorithm 9. Prolongation(A, P)

– Input:A chain A of form (1) and a finite set of polynomials P.
– Output: A prolongation AP of A w.r.t. P.

Begin
AP := A
For i=p to 1

Ωi := {η | ηyi appears in Ai,Ai+1, . . . ,Ap or P};
τ := LCM(Ωi)
For all η / τ

Ωη := {A | A ∈ Ai, ∃ θ ∈ Tσ, θuA = ηyi},
choose an element A of Ωη with the least degree s.t. θuA = ηyi.
AP := AP ∪ θA

Λ := {η | ηyi occurring in AP, ηyi
∈ PAA and ∀ A ∈ AP, uA
= ηyi}
While (Λ
= ∅)

θ := max Λ
For all θ̄ ∈ Λ and θ̄ / θ

choose A ∈ A with the least degree, s.t. ∃ θ′ ∈ Tσ, θ′uA = θ̄yi

AP := AP ∪ θ′A
Λ := {η | ηyi occurring in AP, ηyi
∈ PAA and ∀ A ∈ AP

uA
= ηyi}
End While

i := i − 1
End.

The termination of the algorithm is apparent if we notice that the sequence
of elements of θ := max Λ is strictly decreasing.

Example 1. Consider the chain A = {A1, A2, A3} ⊆ K{y}. The transforming
operators are {σ1, σ2}.

A1 = σ2
2σ1y

2, A2 = σ2σ
3
1y + σ2y, A3 = σ3

2σ2
1y + σ4

2y (3)

Let vec(A) denotes all the vec(Ai) for a chain A. Then, elements of vec(A)
are represented by circles in Figure 1. We have PAA = {y, σ2σ1y, σ2σ

2
1y, σi

1y,
σj

2y | i, j ∈ N}.

Properties of Ascending Chains for Partial Difference Polynomial Systems 313

�

�

�

Fig. 1. The vec(A) for A

�

�

� �

�

�

�

�

�

��

�

�

�

�

�

Fig. 2. The vec(AP) for AP

For P = σ3
2σ4

1y + σ4
2y, we have AP = {A1, σ2A1, σ1A1, A2, σ

2
2A1, A3, σ2A2,

σ1A2, σ3
2A1, σ2A3, σ1A3, σ2σ1A2, σ

2
2A3, σ2σ1A3, σ

2
1A3, σ2σ

2
1A3}. The elements of

vec(AP) are given in Figure 2. The new elements of vec(AP) are represented by
black dots.

We use prem(f, g, x) to denote the algebraic pseudo-remainder of f w.r.t. g
relative to variable x, prem(f, g) is prem(f, g, x) where x is the leading variable
of g.

With these notations, we define the difference pseudo remainder of f w.r.t. A
to be: rprem(f,A) = prem(f,Af) where the variables and their transforms in
f and A are treated as independent algebraic variables. The following lemma is
clear.

Lemma 10. Let f,A be as above and r = rprem(f,A). Then, there is a J ∈ IA
such that uJ < uf ,

Jf ≡ r mod [A] (4)

and r is reduced w.r.t. A. Equation (4) is called the remainder formula.

3.2 Coherent Chains

It is clear that the prolongation of a chain is not unique since for some A ∈ AP we
may choose different A1 and A2 in A to generate A : uA = uθ1A1 = uθ2A2 . The
concept of coherent chain is to guarantee that all these different prolongations
of a chain are equivalent in certain sense.

Definition 11. Let A = A1, . . . , Al be a chain in K{X} and vi = vec(uAi),
i = 1, . . . , l. For any 1 ≤ i < j ≤ m, if class(Ai) = class(Aj) = t, let the
least common multiple transform of uAi and uAj be ηi,juAi = ηj,iuAj . We de-
fine the Δ-polynomials of Ai and Aj as Δj,i = ηj,iAj and Δi,j = ηi,jAi. If
rprem(Δi,j ,A) = 0 and rprem(Δj,i,A) = 0, we call A a coherent chain. Let
Δ(A) be the set of all the Δ-polynomials of A.

314 G.-L. Zhang and X.-S. Gao

Let A = A1, . . . , Al be a chain. A representation g =
∑

i,j gi,jηi,jAi is called
canonical representation if ηi,jAi in the expression are distinct elements in Af

for some polynomial f . In other words, g ∈ (Af).
Let A∗ = AA.

Lemma 12. With the notation of Definition 11. Then the initials appeared in
rprem(Δj,i,A) are all in IA∗ .

Proof: It is apparent due to the definition of the coherent chain.

Lemma 13. Let A be a coherent chain of form (1), A ∈ A, and η ∈ Tσ . Then
there is a J ∈ IA such that uJ < uηA and JηA has a canonical representation.
Proof: Let c = class(A). The polynomials in A with class c are Ac,1, . . . , Ac,i−1,
Ac,i = A, . . . , Ac,kc .

First, if uηA is not the multiple transform of any one of uA1 , . . . ,uAi−1 ,
uAi+1 . . . ,uAc,kc

, then ηA ∈ AηA. Second, suppose that uηA is the multiple
transform of uAc,k

, but ηA ∈ AηA.
Otherwise, we will prove this by induction on the ordering of uηA. Let the

least common transform of uA and uAc,k
be uηiA = uηkAc,k

, Δi,k = ηiA, η̄ηi = η,
so ηA = η̄Δi,k. Since A is a coherent chain, rprem(Δi,k,A) = 0. We have

J̄Δi,k = g1τ1B1 + g2τ2B2 + · · ·

where Bj ∈ A, τjBj ∈ AΔi,j , and uJ̄ < uΔi,k
, degree(Δi,k,uΔi,k

) ≥
degree(τ1B1,uτ1B1), uΔi,k

= uτ1B1 > uτ2B2 > · · · . Let η̄ act on the two sides of
the above equation and we get

η̄J̄ · η̄Δi,j = η̄g1 · η̄τ1B1 + η̄g2 · η̄τ2B2 + · · ·

We denote it by
J1ηA = ḡ1 · ρ1B1 + ḡ2 · ρ2B2 + · · ·

where J1 = η̄J̄ , uJ1 < ηA, ρj = η̄jτj . If ρ1B1 is not of the first two cases, we
continue the above process on ρ1B1 until we get (after rearrange the symbols
properly)

J2ηA = f1 · θ1C1 + f2 · θ2C2 + · · ·
where Cj ∈ A θj ∈ Tσ uηA = uθ1C1 > uθ2C2 > · · · and θ1C1 is of the first
two cases, any θ2C2, θ3C3, . . . satisfy the induction hypothesis. Then there is a
J ∈ IA such that JηA has a canonical representation.

The following is the main property of the coherent chain.

Theorem 14. If A=A1, . . . , Al is a coherent chain, then for any f =
∑

gi,jηjAi,
there is a J ∈ IA such that J · f has a canonical representation and uJ <
max{uηjAi}.
Proof: This is a direct consequence of Lemma 13.

Canonical representations are useful because in a canonical representation∑
gi,jηjAi the polynomial ηiAi with the largest leader is unique and can be

eliminated under certain conditions.

Properties of Ascending Chains for Partial Difference Polynomial Systems 315

4 Regular Chains

Let A be a chain of form (1), f a polynomial. f is said to be partial difference
invertible, (or invertible) w.r.t. A if it is invertible w.r.t. Af when f and Af are
treated as algebraic polynomials.

Definition 15. Let A = A1, . . . , Am be a chain and Ii = init(Ai). A is said to
be (difference) regular if ηIj is invertible w.r.t. A for any η ∈ Tσ and 1 ≤ j ≤ m.

Lemma 16. Let A be a characteristic set of an ideal I. If a polynomial f is
invertible w.r.t. A, then f
∈ I.

Proof: Let U be the algebraic parameter set of A. Since f is invertible w.r.t. A,
there exists a polynomial g and a nonzero r ∈ K[U] such that gf = r mod [A].
If f ∈ I, we have r ∈ I. Since r is reduced w.r.t. A, by Lemma 3, we have r = 0,
a contradiction.

Lemma 17. If A is a regular chain of form (1), then Af is a regular algebraic
triangular set for any polynomial f .

Proof: If A is difference regular, then by Definition 15, all ηIj are invertible w.r.t.
A. The initials of the polynomials in Af are all of the form ηIj and they are
of ordering lower than the highest ordering of the polynomials in Af . Then, by
Definition 4, Af is a regular algebraic triangular set.

Lemma 18. If a chain A of form (1) is the characteristic set of sat(A), then
for any polynomial f , Af is a regular algebraic triangular set.

Proof. By Lemma 5, we need only to prove that B = Af is the characteristic
set of a-sat(B). Let W be the set of all the ηyj such that ηyj is of lower or
equal ordering than an η̄yj occurring in B. Then B ⊂ K[W]. If B is not the
characteristic set of a-sat(B), then there is a g ∈ a-sat(B) ∩ K[W] which is
reduced w.r.t. B and is not zero. g does not contain ηyi which is of higher
ordering than those in W . As a consequence, g is also reduced w.r.t. A. Since
g ∈ a-sat(B) ⊂ sat(A) and A is the characteristic set of sat(A), g must be zero,
a contradiction.

As pointed out in [13], the Rosenfeld Lemma [21] for differential equations can
not be extended to difference case. Correspondingly, we have:

Lemma 19. Let A be a coherent and regular chain, and r a polynomial reduced
w.r.t. A. If r ∈ sat(A), then r = 0.

Proof. Let A = A1, A2, . . . , Al. Since r ∈ sat(A), there is a J1 ∈ IA such that
J1 · r ≡ 0 mod [A]. By Lemma 6, J1 is difference invertible w.r.t. A, i.e. there is
a polynomial J̄1 and a nonzero N ∈ K[V] such that

J̄1 · J1 ≡ N mod [A]

where V is the set of parameters of AJ1 as an algebraic triangular set. Hence,

Nr ≡ J̄1 · J1 · r ≡ 0 mod [A].

316 G.-L. Zhang and X.-S. Gao

Or equivalently,
N · r =

∑
gi,jηi,jAj . (5)

Since A is a coherent chain, by Theorem 14, there is a J2 ∈ IA such that J2 ·N ·r
has a canonical representation in [A], where uJ2 < max{uηi,jAj} in (5). That is

J2 · N · r =
∑

ij

ḡi,jρi,jAj , (6)

where, uρi,jAj are pairwise different. If max{uρi,jAj } in (6) is lower in ordering
than max{uηi,jAj} in (5), we have already reduced the highest ordering of uηi,jAj

in (5). Otherwise, assume uρaAb
= max{uρi,jAj} and Ab = Ib ·udb

Ab
+Rb. Substi-

tuting udb

ρaAb
by − ρaRb

ρaIb
in (6), the left side keeps unchanged since uJ2 < uρaAb

,
N is free of uρaAb

and deg(r,uρaAb
) < deg(ρaAb,uρaAb

). In the right side, the
ρaAb becomes zero, i.e. max{uρi,jAj} decreases. Clearing denominators of the
substituted formula of (6), we obtain a new equation:

(ρaIb)t · J2 · N · r =
∑

fijτi,jAj . (7)

Note that in the right side of (7), the highest ordering of τi,jAj is less than uρaAb

and (ρaIb)t ·J2 is invertible w.r.t. A. Then after multiplying a polynomial which
is invertible w.r.t. A and can be represented as a linear combination of τi,jAj

all of which is strictly lower than uρaAb
. Repeating the above process, we can

obtain a nonzero N̄ , such that N̄ · r = 0. Then r = 0. By Lemma 3, A is the
characteristic set of sat(A).

The following is one of the main results in this paper.

Theorem 20. A chain A is the characteristic set of sat(A) iff A is coherent
and difference regular.

Proof: If A is coherent and difference regular, then by Lemma 19, any polynomial
in sat(A) which is difference reduced w.r.t. A is zero. So A is a characteristic
set of sat(A). Conversely, let A = A1, A2, . . . , Al be a characteristic set of the
saturation ideal sat(A) and Ii = init(Ai). For any 1 ≤ i < j ≤ l, let r =
rprem(Δi,j ,A) as in Definition 11. Then r is in sat(A) and is difference reduced
w.r.t. A. Since A is the characteristic set of sat(A), r = 0. Then A is coherent.
To prove that A is regular, for any 0 ≤ i ≤ l, η ∈ Tσ we need to prove that
f = ηIi is invertible w.r.t. A. Assume this is not true. By definition, f is not
invertible w.r.t. Af when they are treated as algebraic equations. By Lemma 18,
Af is a regular algebraic triangular set. By Lemma 7, there is a g
= 0 which is
reduced w.r.t. Ag (and hence A) such that f ·g ∈ (Af) ⊂ [A]. Since f = ηIi ∈ IA,
g ∈ sat(A) and g is reduced w.r.t. A. Since A is the characteristic set of sat(A),
we have g = 0, a contradiction. Hence, f = ηIi is invertible w.r.t. A and A is
difference regular.

Theorem 21. If A is a coherent and difference regular chain of form (1),then

sat(A) = ∪f∈K{X}a-sat(Af).

Properties of Ascending Chains for Partial Difference Polynomial Systems 317

Proof: It is easy to see that sat(A) ⊃
⋃

f∈K{X}
a-sat(Af). If f ∈ sat(A), since A is

coherent and difference regular chain, and A is the characteristic set of sat(A),
we have rprem(f,A) = 0, or prem(f,Af) = 0, that is f ∈ a-sat(Af). Hence
sat(A) ⊂

⋃
f∈K{X}

a-sat(Af).

Note that we cannot check whether a chain is regular directly due to the reason
that Tσ contains an infinite number of elements. To give a complete zero de-
composition algorithm like the one in [13,15], we need to define a type of chains
such that we have a constructive criterion to check whether it is regular and
the chain A is non-trivial in the sense that Zero(a-sat(A))
= ∅. These problems
are the major open ones for the characteristic set method of partial difference
polynomial systems.

5 Characteristic Set of Reflexive Prime Difference Ideals

In the algebraic and differential cases, prime ideals can be described by irre-
ducible chains. In this section, we will extend this result to the partial difference
case. In order to do that, we need to introduce the concept of strongly irreducible
chains.

A chain A is called strongly irreducible if

– Af is an irreducible algebraic triangular set for any f ∈ K{X}, and
– For η ∈ Tσ and h ∈ K{X}, if ηh ∈ a-sat(Af) then h ∈ a-sat(Af).

Theorem 22. Let A be a coherent and strongly irreducible difference chain.
Then sat(A) is a reflexive prime difference ideal.

Proof: Let f, g be two r-pols such that fg ∈ sat(A). By Lemma 21, there exists a
polynomial h such that fg ∈ D = a-sat(Ah). Since A is strongly irreducible, Ah

is an irreducible algebraic triangular set and hence D is a prime ideal. We thus
have f ∈ D or g ∈ D. In other words, f ∈ sat(A) or g ∈ sat(A). Hence, sat(A)
is a prime ideal. We still need to show that sat(A) is reflexive. If σif ∈ sat(A)
then ∃ h ∈ K{X}, σif ∈ a-sat(Ah). f ∈ a-sat(Ah) according to the definition
of strongly irreducible chain. Then f ∈ sat(A).

To prove that the characteristic set of any prime ideal is strongly irreducible, we
need the following lemmas.

Lemma 23. Let I be a prime difference ideal, A its characteristic set. Then
I = sat(A).

Proof: It is clear that I ⊂ sat(A). Let f ∈ sat(A). Then there is a J ∈ IA such
that Jf ∈ [A] ⊂ I. By Theorem 20, J is invertible w.r.t. A. Hence J is not in I
by Lemma 16. Since I is a prime ideal, f ∈ I.

318 G.-L. Zhang and X.-S. Gao

Lemma 24. Let I be a reflexive prime difference ideal, A its characteristic set.
Then ∀ h ∈ f ∈ K{X}, Ah is algebraic irreducible.

Proof: Otherwise, there exists an h ∈ f ∈ K{X}, such that Ah is a reducible
algebraic triangular set. By definition, there exist polynomials f and g which are
reduced w.r.t. Ah such that fg ∈ Ah ⊂ sat(A) = I. From this, we have f ∈ I
or g ∈ I, which is impossible since f and g are reduced w.r.t. A.

Theorem 25. Let I be a reflexive prime difference ideal, A a characteristic set
of I. Then A is coherent, strongly irreducible, and I = sat(A).

Proof: By Lemma 23, for any characteristic set A of I, we have I = sat(A). By
Theorem 20, A is coherent. By Lemma 24, we have for any h ∈ K{X}, Ah is
algebraic irreducible. Also, if σig ∈ a-sat(Ah), then σig ∈ I. Since I is reflexive,
g ∈ I. Then g ∈ a-sat(Ah).

The following example shows that it is difficult to decide whether a chain is
strongly irreducible. Even in the the ordinary case, deciding whether a chain is
strongly irreducible is a major difficult problem in difference algebra.

Example 2. [10] Let K = Q(t). The transforming operators over K is σ such
that σt = (t + 1). A ⊆ K{x1, x2} and A = {A1,A2} where A1 = x2

1 + t, A2 =
x2

2 + t + k. If k > 1, A2 − σkA1 = (x2 − σkx1)(x2 + σkx1), x2 − σkx1
∈ sat(A),
x2 +σkx1
∈ sat(A). sat(A) is not a prime difference ideal, and A is not strongly
irreducible.

6 Algorithms of Zero Decomposition

In this section, we will present an algorithm which can be used to decompose
the zero set of a general polynomial set into the zero sets of coherent chains.

Lemma 26. Let P be a finite set of polynomials, A = A1, . . . , Am a character-
istic set of P, Ii = init(Ai), and J =

∏m
i=1 Ii. If prem(P,A) = 0 for all P ∈ P,

then

Zero(P) = Zero(A/J)
⋃

∪m
i=1Zero(P ∪ {Ii})

Zero(P) = Zero(sat(A))
⋃

∪m
i=1Zero(P ∪ {Ii})

Proof: This is direct consequence of the remainder formula (4).

Now, we can give the zero decomposition theorem.

Theorem 27. Let P be a finite set of polynomials in K{y1, . . . , yn}, then we can
obtain a sequence of coherent chains Ai, i = 1, . . . , k such that

Zero(P) =
k⋃

i=1

Zero(Ai/IAi) =
k⋃

i=1

Zero(sat(Ai)) (8)

We first give the following algorithm to find the decomposition.

Properties of Ascending Chains for Partial Difference Polynomial Systems 319

Algorithm 28. ZDT(P)

– Input: a finite set P of polynomials.
– Output: W = {A1, . . . ,Ak} s.t. Ai is coherent

and Zero(P) =
⋃k

i=1 Zero(sat(Ai)).
Begin

B = CS(P) //This gives the characteristic set of P.
If B = 1 then W = {}
Else

R = {prem(f,B)
= 0 | f ∈ (P \ B) ∪ 3(B)}
If R = ∅ then W={B} ∪ ∪iZDT(P ∪ {Ii})
Else W = ZDT(P ∪ R)

where Ij are the initials of the polynomials in B.
End.

Proof of Correctness of Algorithm 28. If R = ∅, by Lemma 26, we obtain a chain.
Since Ij is reduced w.r.t. B, by Lemma 2, the characteristic set of P ∪ {Ii} is
of lower ordering than that of B. Similarly, the characteristic set of P ∪ R is of
lower ordering than that of B. By Lemma 1, the algorithm will end and give the
decomposition.

Example 3. Let A = {A1, A2} where A1 = σ2
1y2

3 + σ2y2, A2 = σ2y3 + σ2
1y1. A

is not coherent, since the remainder A3 = rprem(σ2A1,A) = σ2
2y2 + σ4

1y2
1 is

reduced w.r.t. A. If we do the zero decomposition for A we obtain {A3, A1, A2}
which is a coherent chain.

7 Conclusion

In this paper, we extend some of the main properties of chains to the partial
difference polynomial systems. We prove that a partial difference chain is the
characteristic set of its saturation ideal if and only if it is coherent and regular.
We also prove that a partial difference ascending chain is the characteristic set
of a reflexive prime ideal if and only if it is strongly irreducible. Finally, we give
the zero decomposition algorithm.

Comparing to the algebraic, differential, and ordinary difference cases, there
still exist major problems unsolved in the partial difference case. These include
to give a constructive criterion for a chain to be regular and non-trivial and to
solve the perfect ideal membership problem.

References

1. Aubry, P.: Ensembles Triangulaires de polynômes et Résolution de Systèmes
Algébriques, Implantation en Axiom. Thèse de l’université Pierre et Marie Curie
(1999)

2. Aubry, P., Lazard, D., Moreno Maza, M.: On the Theory of Triangular Sets. Journal
of Symbolic Computation 28, 105–124 (1999)

320 G.-L. Zhang and X.-S. Gao

3. Bentsen, I.: The Existence of Solutions of Abstract Partial Difference Polynomial.
Trans. of AMS 158, 373–397 (1971)

4. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the Radical
of a Finitely Generated Differential Ideal. In: Proc. of ISSAC 1995, pp. 158–166.
ACM Press, New York (1995)

5. Boulier, F., Lemaire, F., Moreno Maza, M.: Well Known Theorems on Triangular
Systems and the D5 Principle. In: Proc. of Transgressive Computing 2006, pp.
79–91 (2006)

6. Bouziane, D., Kandri Rody, A., Mârouf, H.: Unmixed-dimensional Decomposition
of a Finitely Generated Perfect Differential Ideal. Journal of Symbolic Computa-
tion 31, 631–649 (2001)

7. Cheng, J.S., Gao, X.S., Yap, C.K.: Complete Numerical Isolation of Real Zeros
in Zero-dimensional Triangular Systems. In: Prof. ISSAC 2007, pp. 92–99. ACM
Press, New York (2007)

8. Chou, S.C.: Mechanical Geometry Theorem Proving. Kluwer Academic Publishers,
Norwell (1987)

9. Chou, S.C., Gao, X.S.: Ritt-Wu’s Decomposition Algorithm and Geometry The-
orem Proving. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 207–220.
Springer, Heidelberg (1990)

10. Cohn, R.M.: Difference Algebra. Interscience Publishers (1965)
11. Dahan, X., Moreno Maza, M., Schost, E., Wu, W., Xie, Y.: Lifting Techniques for

Triangular Decompositions. In: Proc. ISSAC 2005, pp. 108–115. ACM Press, New
York (2005)

12. Gao, X.S., Chou, S.C.: A Zero Structure Theorem for Differential Parametric Sys-
tems. Journal of Symbolic Computation 16, 585–595 (1994)

13. Gao, X.S., Luo, Y.: A Characteristic Set Method for Difference Polynomial Sys-
tems. In: International Conference on Polynomial System Solving, November 24-26
(2004); Submitted to JSC

14. Gao, X.S., Luo, Y., Zhang, G.: A Characteristic Set Method For Ordinary Differ-
ence Polynomial Systems. MM-Preprints 25, 84–102 (2006)

15. Gao, X.S., van der Hoeven, J., Yuan, C., Zhang, G.: A Characteristic Set Method
for Differential-Difference Polynomial Systems. In: MEGA 2007, Strobl, Austria
(July 2007)

16. Hubert, E.: Factorization-free Decomposition Algorithms in Differential Algebra.
Journal Symbolic Computation 29, 641–662 (2000)

17. Kolchin, E.: Differential Algebra and Algebraic Groups. Academic Press, New York
(1973)

18. Kondratieva, M.V., Levin, A.B., Mikhalev, A.V., Pankratiev, E.V.: Differential and
Difference Dimension Polynomials. Kluwer Academic Publishers, Dordrecht (1999)

19. Ritt, J.F.: Differential Algebra, Amer. Math. Soc. Colloquium (1950)
20. Ritt, J.F., Raudenbush Jr., H.W.: Ideal Theory and Algebraic Difference Equa-

tions. Trans. of AMS 46, 445–452 (1939)
21. Rosenfeld, A.: Specialization in Differential Algebra. Trans. Am. Math. Soc 90,

394–407 (1959)
22. Wang, D.: Elimination Methods. Springer, Berlin (2000)
23. Wu, W.T.: On the Decision Problem and the Mechanization of Theorem in Ele-

mentary Geometry. Scientia Sinica 21, 159–172 (1978)
24. Wu, W.T.: A Constructive Theorey of Differential Algebraic Geometry. Lect. Notes

in Math, vol. 1255, pp. 173–189. Springer, Heidelberg (1987)

Properties of Ascending Chains for Partial Difference Polynomial Systems 321

25. Wu, W.T.: Basic Principle of Mechanical Theorem Proving in Geometries (in Chi-
nese). Science Press, Beijing (1984); English Edition. Springer, Wien (1994)

26. van der Hoeven, J.: Differential and Mixed Differential-Difference Equations from
the Effective Viewpoint (preprints, 1996)

27. Yang, L., Zhang, J.Z., Hou, X.R.: Non-linear Algebraic Equations and Automated
Theorem Proving (in Chinese). ShangHai Science and Education Pub., ShangHai
(1996)

Some Mathematical Problems in Cryptanalysis

Xiaoyun Wang1,2

1 Tsinghua University, Beijing, China
xywang@sdu.edu.cn

2 Shandong University, Jinan, China

Abstract. The talk will recall some basic mathematical problems on
analyzing both symmetric and asymmetric ciphers. A special focus will
be on the advances in asymmetric ciphers based on the research of some
fundamentally hard mathematical problems. Some fundamental statisti-
cal problems and cryptanalysis techniques for symmetric cipher will be
reviewed as well.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, p. 322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Reduction Attack on Algebraic Surface

Public-Key Cryptosystems

Maki Iwami

Osaka University of Economics and Law, Japan
maki@keiho-u.ac.jp

Abstract. An algebraic surface public-key cryptosystem was developed
by Akiyama and Goto. Its security is based on a decision randomizing
polynomial problem which is related to a problem of finding sections on
fibered algebraic surfaces which can be reduced to solving a multivariate
equation system known to be NP-complete. In the case that the defining
equation of a surface used for public-key is in a certain form, Uchiyama
and Tokunaga succeeded in attacking in the sense of getting plain texts
from corresponding ciphertexts using reductions efficiently without solv-
ing section finding problem. In this paper, two algorithms applicable to
all cases are suggested. One is the generalization of Uchiyama-Tokunaga’s
attack from polynomial ring over IFp to polynomial ring over rational
function field, and the other takes advantages of Gröbner base techniques
so as to deal with in the polynomial ring over IFp.

1

1 Introduction

Public key cryptography is widely used because it enables secure communica-
tion with a party accessing the site for the first time. But the current one is
time consuming, uses a lot of electricity so unsuitable for mobile applications,
and will be decrypted when quantum computers become available. To address
these issues, a Public-key Cryptosystem using Algebraic Surfaces was developed
by Akiyama and Goto, and opened to general public at website as a research
news of Toshiba corporation in 2005 [2], and some papers are published [1, 3, 4].
Its brief survey is given in section2. Its security is based on a decision ran-
domizing polynomial problem which is related to a problem of finding sections
on fibered algebraic surfaces. This problem can be reduced to solving a mul-
tivariate equation system and it is known to be NP-complete. In 2007, in the
case that the defining equation of a surface used for public-key is in a certain
form, Uchiyama and Tokunaga successed to attack in the sense of getting plain
text from cipher text using reductions efficiently without solving section finding
problem [5]. And the abstract is introduced in CRYPTREC report 2006 [6] in
the Appendix Chapter, which is known to be the important report related to
e-Government recommended ciphers in Japan. Its brief survey is given in sec-
tion3. Note that, at this point, the cryptosystem can be used safely if only we
1 A part of this work was supported by JSPS. Grant-in-Aid for Scientific Research.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 323–332, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

324 M. Iwami

avoid to adopt using public key with vulnerability in the key generation step.
Therefore, in this paper, two algorithms applicable to all cases are suggested in
section4, i.e. the cryptosystem is completely broken. One is the generalization
of Uchiyama-Tokunaga’s attack from polynomial ring over IFp to polynomial
ring over rational function field (which is written in [8] without proofs). And
the other takes advantages of Gröbner base techniques so as to deal with in the
polynomial ring over IFp.

2 Algebraic Surface Public-Key Cryptosystem [1, 3, 4]

[key generation]
Secret key: Choose two distinct curves of the form D1 : (x, y, t) = (ux(t),
uy(t), t), D2 : (x, y, t) = (vx(t), vy(t), t) satisfying degux(t)
= degvx(t) or
deguy(t)
= degvy(t) for the uniqueness of decryption, and satisfying (ux(t) −
vx(t))|(uy(t) − vy(t)) for c10(t) ∈ IFp[t] (not IFp(t)) in step (a) in Pulic-key
generation.

Public key:
(a) Construct algebraic surface (public key) X(x, y, t) =

∑
i,j cij(t)xiyj = 0

over IFp containing two curves (secret key), i.e. it satisfy X(ux(t), uy(t), t) =
X(vx(t), vy(t), t) = 0. First, ramdomly choose cij(t) with (i, j)
= (0, 0), (1, 0)
and then calculate c10(t) and c00(t) ∈ IFp(t) as follows.
c10(t) := −

∑
(i,j) 	=(0,0),(1,0) ci,j(t){ux(t)iuy(t)j − vx(t)ivy(t)j}/(ux(t) − vx(t))

c00(t) := −
∑

(i,j) 	=(0,0) ci,j(t)ux(t)iuy(t)j .

Fig. 1. Akiyama-Goto Algebraic Surface Pulic-Key Cryptosystems

A Reduction Attack on Algebraic Surface Public-Key Cryptosystems 325

(b) Choose � ∈ IN as a lower bound for the degree of a monic irreducible poly-
nomial f(t) ∈ IFp[t] chosen in the encryption step. For reasons of security (see
5.3 in [4]), we impose degtX(x, y, t) < �.
(c) Choose d ∈ IN satisfying d ≥ max{degux(t), deguy(t), degvx(t), degvy(t)}.

By taking a large � or d, the characteristic p of the ground field can be chosen
as small as possible (e.g. at most 4 bits). The estimation of the key size are
discussed in section 7 in [4].

[encryption] Let m be a plain text, and divide m into small blocks as m =
m0||m1|| · · · ||m�−1 where each mi is chosen 0 ≤ mi ≤ p − 1.

1. Embed m into a plain text polynomial as m(t) = m�−1t
�−1 + · · ·+m1t+m0

2. Choose a random polynomial s(x, y, t) containing a term xαyβ with
α > degxX(x, y, t) and β > degyX(x, y, t) and satisfying (degxs(x, y, t)
+degys(x, y, t))d + degts(x, y, t) < �. (This implies deg(s(ux(t), uy(t), t)−
s(vx(t), vy(t), t)) < �, therefore we can extract f(t) in the decryption step.)

3. Choose a random polynomial r(x, y, t) satisfying degtr(x, y, t) < �, and a
random monic irreducible polynomial f(t) with degf(t) >= �

4. Compute the cipher polynomial F (x, y, t) = m(t) + f(t)s(x, y, t) + X(x, y, t)
r(x, y, t).

[decryption] As D1, D2 are on X , X(ux(t), uy(t), t) = X(vx(t), vy(t), t) = 0.

1. Substitute sections D1 and D2 into F (x, y, t) :
h1(t) = F (ux(t), uy(t), t) = m(t) + f(t)s(ux(t), uy(t), t)
h2(t) = F (vx(t), vy(t), t) = m(t) + f(t)s(vx(t), vy(t), t)

2. Compute h1(t) − h2(t)(= f(t){s(ux(t), uy(t), t) − s(vx(t), vy(t), t))}.
3. Factorize and find f(t) as a monic irreducible polynomial with maximum

degree.
4. Compute m(t) by reducing h1(t) by f(t). (degm(t) < degf(t).)
5. Extract m from m(t).

Example 1 (key generation and encryption). Now we consider in IF2.
[Secret key] We define secret keys as two distinct curves as
D1 : (ux(t), uy(t), t)=(t2+t, t3+t2+t + 1, t), D2 : (vx(t), vy(t), t)=(1+t, 1+t2, t).
[Public key] As one example, we obtain the following algebraic surface.
XB(x, y, t) := t2 + t8 + t12 + t14 + t21 + t22 + t23 + t24 + t26 + t27 + t28 + t29 + y +
t2y +y2 + t3y2 +y3 + t2y3 + t3y3 + ty4 + t2y4 + t4y4 + t5y4 +y5 + t4y5 +x(t+ t3 +
t5 + t10 + t11 + t16 + t17 + t19 + t21 + t23 + t26 + t28 + t3y + t4y + y2 + ty2 + t3y2 +
y3 + ty3 + t3y3 + t5y3 +y4 + ty4 + t2y4 + t3y4 + t4y4 +y5 + t2y5)+x4(1+ t2 + t4 +
t5 + t3y+ t4y + t5y +y2 + ty2 + t2y2 + t3y2 + t4y2 + ty3 + t2y3 + t4y3 +y4 + t2y4 +
t3y4 + t5y4 +y5 + t4y5)+x3(t+ t3 + t4 + t5 +y+ ty+ t3y+ t5y+ t2y2 + t4y2 +y3 +
t2y3 + t3y3 + t5y3+ t2y4 + t3y4 +y5+ t5y5)+x2(t+ t5+ t2y+ t4y+y2+ ty2+ ty3+
t2y3+t3y3+t4y3+t5y3 +y4+ty4+t3y4+t4y4+y5+ty5+t5y5)+x5(1+t3+ty+
t2y+t3y+t4y+t4y2+t5y2+ty3+t2y3+t4y3+y4+t2y4+t4y4+ty5+t2y5+t5y5)
[encryption] m(t) := 1 + t + t2 + t3 + t4 + t6 + t8 + t9 + t14 + t17 + t19 + t20 +
t23 + t26 + t28 + t29 + t30 + t32 + t34 + t35 + t36 + t37 + t39,

f(t) := 1+t+t2+t4+t7+t9+t10+t11+t14+t17+t22+t23+t25+t26+t27+t28+t32+

326 M. Iwami

t34+t36+t38+t40, s(x, y, t) := t+t3+x3+y2+x6y6, r(x, y, t) := 1+t3+t4+xy+y2.

Then the cipher polynomial FB(x, y, t) := t2+t8+t12+t14+t21+t22+t23+t24+
t26+t27+t28+t29+y+t2y+y2+t3y2+y3+t2y3+t3y3+ty4+t2y4+t4y4+t5y4+
y5+t4y5+x(t+t3+t5+t10+t11+t16+t17+t19+t21+t23+t26+t28+t3y+t4y+y2+
ty2+t3y2+y3+ty3+t3y3+t5y3+y4+ty4+t2y4+t3y4+t4y4+y5+t2y5)+x4(1+
t2 + t4+ t5 + t3y+ t4y+ t5y+y2+ ty2+ t2y2 + t3y2+ t4y2 + ty3+ t2y3 + t4y3 +y4+
t2y4+t3y4+t5y4+y5+t4y5)+x3(t+t3+t4+t5+y+ty+t3y+t5y+t2y2+t4y2+
y3+t2y3+t3y3+t5y3+t2y4+t3y4+y5+t5y5)+x2(t+t5+t2y+t4y+y2+ty2+ty3+
t2y3+t3y3+t4y3+t5y3 +y4+ty4+t3y4+t4y4+y5+ty5+t5y5)+x5(1+t3+ty+
t2y+t3y+t4y+t4y2+t5y2+ty3+t2y3+t4y3+y4+t2y4+t4y4+ty5+t2y5+t5y5).

3 Attack on Algebraic Surface Public-Key Cryptosystem
under the Assumption [5]

Assumption 1. For the defining equation of the algebraic surface X which will
be used as the public key, the leading term is in the form as LT(X)cxαyβ where
c ∈ IFp and (α, β)
= (0, 0) w.r.t. a monomial order R̂.

Algorithm 1 (Uchiyama-Tokunaga’s attack).
Input : Akiyama-Goto’s public key X(x, y, t) ∈ IFp[x, y, t]

satisfying Assumption1, cipher polynomial F (x, y, t) ∈ IFp[x, y, t].
Ountput : Plaintext m which corresponds to the cipher polynomial F (x, y, t).

1. Calculate normal form R1(x, y, t) of the reduction of F (x, y, t) by X(x, y, t).
2. Among the temrs of R1, randomly choose the term satisfying xiyj ((i, j)
=

(0, 0)), and its coefficient not being in IFp, then let its coefficient be C.
3. Calculate factors in IFp[t] of C, and let the set consisting of irreducible fators

whose degree is greater than or equal to � be Ĝ. Choose the element g ∈ Ĝ

and the normal form n of R1 becomes an element in IFp[t].(g(t) is f(t))
4. Compute a polynomial n(t) = nk−1t

k−1 + · · · + n1t + n0 ∈ IFp[t], outputs
m = n0||n1|| · · · ||nk−1 and end. (n(t) is m(t))

If cαβ(t) of LT(X) = cαβ(t)xαyβ is not constant then the normal form of
F (x, y, t) by X(x, y, t) does not necessarily stop in the form as F (x, y, t) = m(t)+
f(t)R2(x, y, t) + X(x, y, t)(f(t)G2(x, y, t) + q(x, y, t)) −→

X
m(t) + f(t)R2(x, y, t),

i.e. some terms might be reduced and disappear, so we might fail to detect f(t).

Example 2 (unworkable case : Uchiyama-Tokunaga’s attack to Example 1). The
normal form of the reduction of FB(x, y, t) by XB(x, y, t) is as follows. Note that
denominators are caused by t(1 + t + t4) from LT(XB) = t(1 + t + t4)x5y5.
RB(x, y, t) := (1 + t3 + t7 + · · · + t44y16 + t46y16 + t48y16 + x2(t4y6 + t8y6 +
t12y6 + · · ·+ t42y16 + t45y16 + t49y16)+x(ty6 + t4y6 + t5y6 + · · ·+ t45y16 + t47y16 +
t49y16) + x4(t6 + t4y6 + t6y6 + · · · + t46y16 + t47y16 + t50y16

) + x3(1 + t + t2 +
· · ·+ t48y16 + t49y16 + t50y16))/(1+ t3 + ty + t2y + t3y + t4y + t4y2 + t5y2 + ty3 +
t2y3 + t4y3 + y4 + t2y4 + t4y4 + ty5 + t2y5 + t5y5)2. Even if we focus attention
on numerator, GCD of cij(t) except c00(t) is 1 i.e. we cannot detect f(t). In the

A Reduction Attack on Algebraic Surface Public-Key Cryptosystems 327

reduction process, leading coefficient t(1 + t + t4) of LT(XB) result in breaking
such an important form m(t) + f(t)R2, therefore even if we focus attention on
cij(ij
= (0, 0)) (i.e. coefficients of x, y), f(t) cannot be detected.

4 Attack on Algebraic Surface Public-Key Cryptosystem

In this section, two algorithms applicable to all cases are suggested. The idea
is to transform X(x, y, t) into monic w.r.t. x and y, because t in LT(X) drives
detecting f(t) failure in the reduction process. First one is Algorithm 2 which
we generalize the Uchiyama-Tokunaga’s attack in a straightforward way, work-
ing in the polynomial ring w.r.t. x, y over rational function field w.r.t. t. We
denote it by IFp(t)[x, y]. Second one is Algorithm 3 which we use Gröbner
base techniques, working in the polynomial ring IFp[x, y, t,A] introducing a new
parameter A. We can say that two algorithms are essentially the same.

4.1 Attack by Straightforward Generalization in IFp(t) [x, y]

Algorithm 2. [straightforward generalization in IFp(t) [x, y]]
Input : Akiyama-Goto’s public key X(x, y, t) ∈ IFp[x, y, t],

cipher polynomial F (x, y, t) ∈ IFp[x, y, t].
Ountput : Plaintext m which corresponds to the cipher polynomial F (x, y, t).

0. Transform public key X to be monic as X̃:=X/LC(X).
1. Calculate the normal form R1(x, y, t) ∈ IFp(t)[x, y] by reduction of F by X̃ .
2. Randomly choose the term satisfying cij(t)xiyj ((i, j)
= (0, 0)) and cij(t)

not being in IFp, changing cij(t)(∈ IFp(t)[x, y]) to equivalent fractions with
a common denominator, and let the numerator be C(∈ IFp[t]).

3. Factorize C in IFp[t], and let the set consisting of irreducible factors whose
degree is greater than or equal to � be Ĝ. Choose g ∈ Ĝ and calculate the
the normal form n by reduction of R1 by g becomes an element in IFp[t] .

4. Compute a polynomial n(t) = nk−1t
k−1 + · · · + n1t + n0 ∈ IFp[t], outputs

m = n0||n1|| · · · ||nk−1 and end.

During the reduction step, to obtain m(t) in IFp[x, y, t] (not in IFp(t)[x, y]), we
must not combine appearing rational functions and the lower polynomial terms.
This algorithm needs basic proposition and theorem as follows.

Proposition 1 (Proposition1 in pp.79-80 in [7]). Let G = {g1, · · · , gt} be
a Gröbner basis for an ideal I ⊂ k[x1, · · · , xn] and let f ∈ k[x1, · · · , xn] (which
denotes the polynomial ring over the field k where x1, · · · , xn are variables).
Then there is a unique r ∈ k[x1, · · · , xn] with the following two properties:
(i) There is g ∈ I such that f = g + r.
(ii) No term of r is reduced by any of LT(g1), · · · , LT(gt).
In particular, r is the normal form of the reduction of f by G no matter how the
elements of G are listed when using the reduction algorithm.

328 M. Iwami

Theorem 1. Generated polynomials g(t) and n(t) in Algorithm 2 are equal to
the polynomial f(t) used in encryption/decryption step and m(t) obtained from
plain text polynomial in Akiyama-Goto cryptosystem, respectively.

Proof. We transform public key X to be monic as X̃:=X/LC(X) ∈ IFp(t)[x, y].

Let I :=
〈
X̃

〉
⊂ IFp(t)[x, y] be a principal ideal generated by X̃ . Then {X̃} is a

Gröbner basis of I. Note that we are not working in IFp[x, y, t] but in IFp(t)[x, y].
As I is a principal ideal, any elements of I is uniquely denoted by GX̃ (G ∈
IFp(t)[x, y]). Therefore, ∃G1, R1 ∈ IFp(t)[x, y] s.t. F = G1X̃ + R1 are uniquely
determined by Proposition 1. R1 is equivalent to R1 in Step 1 in Algorithm
2. Note that R1 satisfies the condition in Proposision 1(ii) i.e. no term of
R1 is reduced by LT(X̃). Similarly, for s(x, y, t), ∃G2, R2 ∈ IFp(t)[x, y] s.t. s =
G2X̃ + R2 are uniquely determined, and no term of R2 is reduced by LT(X̃).
Substitute X = LC(X)X̃ and s = G2X̃+R2 for the cipher polynomial generated
as F = m(t) + f(t)s(x, y, t) + X(x, y, t)r(x, y, t), then we obtain
F (x, y, t) = m(t) + f(t)(G2(x, y, t)X̃(x, y, t) + R2(x, y, t)) + LC(X)X̃(x, y, t)r(x, y, t)

= m(t) + f(t)R2(x, y, t) + X̃(x, y, t)(f(t)G2(x, y, t) + LC(X)r(x, y, t)).
˜

where m(t), f(t), LC(X)∈IFp[t], r(x, y, t)∈IFp[x, y, t], and R2(x, y, t), X̃(x, y, t),
G2(x, y, t) ∈ IFp(t)[x, y]. Now LT(X), leading term of X(x, y, t) is monic w.r.t.
x and y, therefore it satisfies Assumption 1, then each term of m(t) + f(t)R2

cannot be reduced by LT(X̃), therefore the uniqueness of R1 in Proposition 1
leads to the equality m(t) + f(t)R2 = R1. Now we assume that R2 = R2(t) ∈
IFp(t) i.e. free from x and y. If we substitute D1 = (ux(t), uy(t), t) and D2 =
(ux(t), uy(t), t) for cipher polynomial F , respectively, we obtain the following
equations in the decryption step of Akiyama-Goto cryptosystem.
h1(t) = F (ux(t), uy(t), t) = m(t) + f(t)s(ux(t), uy(t), t)

= m(t) + f(t) (G2(ux(t), uy(t), t)X(ux(t), uy(t), t) + R2(t)) = m(t) + f(t)R2(t)

by substituting s = G2X̃ + R2. Similary, we obtain h2(t) = m(t) + f(t)R2(t),
too. This means h1 = h2 then it cannot be decrypted. Therefore, R2 has terms
as xiyjtk ((i, j)
= (0, 0), k ≥ 0) in its numerator, and then R1 = m(t) + f(t)R2

has terms as xiyjtk ((i, j)
= (0, 0), k ≥ 0) in its numerator, too. Let C be the
coefficient satisfying the condition of Step 2 in all terms of R1. Then f ∈ Ĝ

as C is reducible by f(t). If there exists g ∈ Ĝ differ from f such that the
normal form of the reduction of R1 by g becomes an element of IFp[t], then
∃G3, n ∈ IFp(t)[x, y] s.t. R1 = G3g + n are uniquely determined and n ∈ IFp(t)
by Proposition 1. Then, by the decryption step, we have the equality as h1(t)−
h2(t) = g(t)(G3(ux(t), uy(t), t) − G3(vx(t), vy(t), t)). Then we have g(t) = f(t),
and it comes to a contradiction. Therefore, the generated polynomial g in Step
3 is equal to f . We utilize the above equation, we have the equality as R1 =
n(t)+ f(t)G3 = m(t)+ f(t)R2 If m
= 0 then using the fact that each term of m

is not reducible by the term of f(t) and Proposition 1, we obtain n(t) = m(t).
Moreover n(t) ∈ IFp[t](not IFp(t)), because, in the above equation, we can see all
higher order terms have a factor f(t) which reduce remaining all factors (which

A Reduction Attack on Algebraic Surface Public-Key Cryptosystems 329

are in IFp(t)[x, y]) to be 0, i.e. only m(t) ∈ IFp[t] remains. If m = 0 then n(t) is
reducible by f(t), we obtain n(t) = m(t) ∈ IFp[t].

Example 3. X̃B(x, y, t) := XB(x, y, t)/LC(XB) where LC(XB) = t(1 + t + t4).
Note that we are working in k(t)[x, y] (polynomial ring w.r.t. x, y over ratio-
nal function field w.r.t. t). FB(x, y, t) −→

X̃B(x,y,t)
R1(x, y, t)(∈ IF2(t)[x, y]), where

t2(1 + t + t4)3 appears at denominators. The following list is the set of numera-
tors, which are factorized over IF2, of all nonzero terms of R1(x, y, t) except for
c00, after changing them to equivalent fractions with a common denominator.

{(1+ t)5(1+ t+ t2)(1+ t+ t4)(1+ t3 + t4 + t5 + t6 + t7 + t8 + t10 + t12)(1+ t2 + t3 +
t4 + t5 + t6 + t8 + t9 + t11 + t13 + t14)(1+ t+ t2 + t4 + t7 + t9 + t10 + t11 + t14 + t17 +
t22 + t23 + t25 + t26 + t27 + t28 + t32 + t34 + t36 + t38 + t40), · · · · · · · · · · · · · · · , (1+
t)(1 + t + t5 + t6 + t8)(1 + t + t2 + t4 + t7 + t9 + t10 + t11 + t14 + t17 + t22 + t23 +
t25 + t26 + t27 + t28 + t32 + t34 + t36 + t38 + t40)}.

We can see all nonzero elements (except c00) have the same factor 1+t+t2+t4+
t7+t9+t10+t11+t14+t17+t22+t23+t25+t26+t27+t28+t32+t34+t36+t38+t40) :=
g(t) (i.e. f(t) is obtained). In the actual computation, we may only to calcu-
late GCD of any two elements (except c00). Finally, we reduce R(x, y, t) by
g(t)(= f(t)) and obtain the plain text polynomial m(t).

4.2 Attack by Utilizing Gröbner Base Techniques in IFp [x, y, t, A]

In this section, we utilize Gröbner base techniques introducing a new parameter.
This algorithm enables us not to work via rational function field but to keep
staying in the polynomial ring. We need the following Corollary.

Corollary 1 (Corollary2 in pp.80 in [7]). Let G = {g1, · · · , gt} be a Gröbner
basis for an ideal I ⊂ k[x1, · · · , xn] and let f ∈ k[x1, · · · , xn]. Then f ∈ I if and
only if the normalform of the reduction of f by G is zero.

Algorithm 3. [utilizing Gröbner base techniques in IFp [x, y, t,A]]
Input : Akiyama-Goto’s public key X(x, y, t) ∈ IFp[x, y, t],

cipher polynomial F (x, y, t) ∈ IFp[x, y, t].
Ountput : Plaintext m which corresponds to the cipher polynomial F (x, y, t).

0. Calculate Gröbner base GBX for an ideal IX :=〈A · X(x, y, t),A · LC(X)−1〉
⊂ IFp[x, y, t,A], introducing a new parameter A, using the order x . y .
A . t in IFp[x, y, t,A].

1. Calculate the normal form R(x, y, t,A) ∈ IFp[x, y, t,A] of the reduction of
F (x, y, t) by GBX .

2. Randomly choose the term satisfying cij(t,A)xiyj ((i, j)
= (0, 0)) where
cij(t,A) not being in IFp, then let cij(t,A) be C.

3. To perform desired factorization for detecting f(t), we factor out powers of A.
Therefore we transform each term of C by using the relation A·LC(X) = 1 as
A0 �→ (A·LC(X))2 = A2 ·LC(X)2,A1 �→ A(A·LC(X))1 = A2 ·LC(X), · · · ,

so as to make the powers of A of each term equal. Then perform factorization

330 M. Iwami

in IFp[t,A], and let the set consisting of irreducible fators whose degree is
greater than or equal to � be Ĝ. Choose the element g(t) ∈ Ĝ. Calculate
Gröbner base GBg for an ideal Ig := 〈g(t),A · LC(X) − 1〉 ⊂ IFp[t,A], and
calculate the normal form n ∈ IFp[t] reducing R(0, 0, t,A) by GBg.

4. Compute a polynomial n(t) = nk−1t
k−1 + · · · + n1t + n0 ∈ IFp[t], outputs

m = n0||n1|| · · · ||nk−1 and end.

Theorem 2. Generated polynomials g(t) and n(t) in Algorithm 3 are equal to
the polynomial f(t) used in encryption/decryption step and m(t) obtained from
plain text polynomial in Akiyama-Goto cryptosystem, respectively.a

Proof. Reduction by X̃ := X/LC(X) ∈ IFp(t)[x, y] in Algorithm2 is equivalent
to reduction by Gröbner base GBX of an ideal IX =〈A · X(x, y, t),A · LC(X)−1〉
⊂ IFp[x, y, t,A]. The technique of dealing with rational function by Gröbner base
in the polynomial ring is well-known in computer algebra. We assume GBX :=
{g1, · · · , gw} ⊂ IFp[x, y, t,A] (g1 . · · · . gw). Note that g1 is monic w.r.t. x, y

as generators of GBX are AX and A · LC(X) − 1. As can be seen in the proofs
in Algorithm1, 2, in the word of Gröbner base theory, the strategies is : (1)
Reduce a cipher polynomial F (x, y, t) by GBX , (2) Detect f(t), (3) Continue
reducing by GBf , (4) Obtained normal form is a plain text polynomial m(t).

Let R̃1(x, y, t,A) be the normal form of F (x, y, t) reduced by GBX , i.e.

F (x, y, t) =
∑w

i=1 ai(x, y, t,A)gi(x, y, t,A) + R̃1(x, y, t,A) −→
GBX

R̃1(x, y, t,A)

where gi(x, y, t,A) . R̃1(x, y, t,A), ai(x, y, t,A), R̃1(x, y, t,A) ∈ IFp[x, y, t,A],
gi(x, y, t,A) ∈ GBX ⊂ IX ∈ IFp[x, y, t,A]. Whereas, F is constructed as
F (x, y, t) = m(t) + f(t)s(x, y, t) + X(x, y, t)r(x, y, t). Let R̃2(x, y, t,A) be the
normal of s(x, y, t) reduced by GBX , i.e. s(x, y, t) =

∑w
i=1 bigi + R̃1 −→

GBX

R̃2

where gi . R̃2, bi, R̃1 ∈ IFp[x, y, t,A], gi ∈ GBX ⊂ R̃1 ∈ IFp[x, y, t,A].
AX, LC(X) · A − 1 ∈ IX implies AX −→

GBX

0 and LC(X) · A − 1 −→
GBX

0 by

Corollary 1. Then X(x, y, t) = LC(X) · (A · X) − X · (LC(X) · A − 1) −→
GBX

0.

Therefore, from the uniqueness of the normal form by Gröbner base, we obtain
F (x, y, t) −→

GBX

m(t) + f(t)R̃2(x, y, t,A) = R̃1(x, y, t,A) ∈ IFp[x, y, t,A]

Note that if we substitute A = 1/LC(X) into R̃i(x, y, t,A) ∈ IFp[x, y, t,A] in
Algorithm3, thenwe obtainRi(x, y, t) inAlgorithm2as R̃i(x, y, t, 1/LC(X))=
Ri(x, y, t) ∈ IFp(t)[x, y] (i = 1, 2). The proof that R̃2 has terms as xiyjtk, ((i, j)
=
(0, 0), k ≥ 0), and the proof can be done in the same way as we see in Algorithm
1,2. Therefore focusing attention on coefficients of xiyj (i, j)
= (0, 0), f(t) can
be detected if we factor out power of A utilizing the relation A · LC(X) = 1 over
IFp (or substitute 1/LC(X) into A as in Algorithm 2. It depends on the software
system which method we should use).

To reduce R̃1(x, y, t,A) by f(t), we use the Gröbner base GBf of an ideal
If = 〈f(t), A · LC(X) − 1〉 , x . y . A . t. As m(t) ∈ IFp[t] and f(t) . m(t),
we can calculate as R̃1(0, 0, t,A) = m(t) + f(t)R̃2(0, 0, t,A) −→

GBf

m(t).

A Reduction Attack on Algebraic Surface Public-Key Cryptosystems 331

Example 4. We cryptanalyze the cipher polynomial FB(x, y, t) and obtain a
plain text m by Algorithm 3 using the order x . y . A . t in IF2[x, y, t,A]. Let
GBX be a Gröbner Basis for ideal IX := 〈A · X(x, y, t),A · LC(X) − 1〉 which is
calculated as follows.

GBX = {1+At+At2+At5, 1+At+t2+t3+At3+t6+t7+· · · · · ·+At2xy5+x2y5+
Ax2y5 +At2x2y5 + x3y5 +Ax3y5 +Atx3y5 +At2x3y5Ax4y5 +At4x4y5 + x5y5}
Calculate the normal form of the reduction of FB(x, y, t) by GBX , we obtain
R(x, y, t,A) =

∑
cij(t,A)xiyj ∈ IF2[x, y, t, α]. Take some terms cij(t,A)xiyj ex-

cept including c00, calculate GCD of {cij(t,A)}, by extracting powers of A by
using the relation A · LT = 1. For example, if we take 1 + t + t2 + At2 + t3 +
A2t3 + t6 + t9 + t11 + t12 + t14 + t18 + t20 + t27 + t28 + t34 + t40, then we transform
by A0 → (A · LC)2 = A2 · LC2, A1 → A(A · LC)1 = A2 · LC to factor out A2.
Then we obtain A2(t2(1 + t3 + t4)2(1 + t + t2 + t4 + t7 + t9 + t10 + t11 + t14 +
t17 + t22 + t23 + t25 + t26 + t27 + t28 + t32 + t34 + t36 + t38 + t40) and detect f(t)
having maximum degree. Finally, we reduce R(0, 0, t,A) by GBf as follows.
R(0, 0, t,A) = 1+A+A2t +At3 +A2t3 +At4 +A2t4 + t5 + t6 + t7 + t13 + t15 +
t16 + t18 + t19 + t22 + t23 + t25 + t30 + t33 + t34 + t37 + t40 + t41 + t44 + t46 + t58 +
t60 + t62 + t63 + t64, GBf = {1 + t + t2 + t4 + t7 + t9 + t10 + t11 + t14 + t17 +
t22 + t23 + t25 + t26 + t27 + t28 + t32 + t34 + t36 + t38 + t40, A + t + t2 + t5 + t6 +
t7 + t8 + t10 + t12 + t13 + t15 + t16 + t18 + t21 + t27 + t30 + t32 + t33 + t34 + t39},
R(0, 0, t,A) −→

GBf

m(t) (We succeed in obtaining the plain text polynomial.)

5 Conclusion

In this paper, two algorithms to attack Akiyama-Goto Algebraic Surface Public-
key Cryptosystem (2005) are suggested. They are applicable to all cases, i.e. it
shows that the cryptosystem is useless. One is a straightforward generalization
of Uchiyama-Tokunaga’s attack in IFp[x, y, t], by working via polynomial ring
over rational function field IFp(t)[x, y]. And the second one takes advantages
of Gröbner base techniques so as to work in the polynomial ring IFp[x, y, t,A],
introducing a new parameter A.

References

[1] Akiyama, A., Goto, Y.: A Construction of an Algebraic Surface Public-key Cryp-
tosystem. In: CD-ROM 2E4-3, Symposium on Cryptography and Information Se-
curity (SCIS 2005), January 2005, pp. 925–930 (2005)

[2] Algebraic surface public key cryptosystem. opened to the general public at website
(February 2005), http://www.toshiba.co.jp/rdc/rd/topics e 05.htm#050206,
http://www.toshiba.co.jp/rdc/rd/detail j/0502 06.htm

[3] Akiyama, A., Goto, Y.: A Security Analysis for a Public-key Cryptosystem using
Algebraic Surfaces. In: CD-ROM 2A3-1, SCIS 2006 (January 2006)

[4] Akiyama, K., Goto, Y.: A Public-key Cryptosystem using Algebraic Surfaces. In:
Workshop Record of the International Workshop on Post-Quantum Cryptography
(PQCrypto 2006), May 2006, pp. 119–138 (2006)

http://www.toshiba.co.jp/rdc/rd/topics_e_05.htm#050206
http://www.toshiba.co.jp/rdc/rd/detail_j/0502_06.htm

332 M. Iwami

[5] Uchiyama, S., Tokunaga, H.: On the Security of the Algebraic Surface Public-
Key Cryptosystems. In: CD-ROM 2C1-2, SCIS 2007 (January 2007) (written in
Japanese)

[6] Cryptography Research and Evaluation Committees : CRYPTREC Report 2006,
Report of the Cryptographic Technique Monitoring Subcommittee (March 2007),
http://www2.nict.go.jp/y/y213/cryptrec publicity/c06 wat final.pdf

[7] Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algoriths: An Introduction to
Computational Algebraic Geometry and Commutative Algebra, 2nd edn. Springer,
Heidelberg

[8] Iwami, M.: A Reduction Attack on Algebraic Surface Public-Key Cryptosystems.
Workshop of Research Institute for Mathematical Sciences (RIMS) Kyoto Univer-
sity, New development of research on Computer Algebra (held on July 4-6 2007)
RIMS Kokyuroku 1572, pp.114–123 (November 2007) (written in Japanese)

http://www2.nict.go.jp/y/y213/cryptrec_publicity/c06_wat_final.pdf

The Four Colour Theorem: Engineering of a

Formal Proof

Georges Gonthier

Microsoft Research, Cambridge, England

Abstract. The 150 year old Four Colour Theorem is the first famous
result with a proof that requires large computer calculations. Such proofs
are still controversial: It is thought that computer programs cannot be
reviewed with mathematical rigor.

To overturn this belief, we have created a fully computer-checked proof
of the Four Colour Theorem. Using the Coq proof assistant, we wrote an
extended program that specifies both the calculations and their mathe-
matical justification. Only the interface of the program – the statement
of the theorem – needs to be reviewed. The rest (99.8%) is self-checking:
Coq verifies that it strictly follows the rules of logic. Thus, our proof is
more rigorous than a traditional one.

Our effort turned out to be more than just an exercise in verification;
having to definine rigorously all key concepts provided new mathemat-
ical insight into the concept of planarity. Planarity has topological and
combinatorial characterizations, which are often confused in arguments
that are both pictorially appealing and logically incomplete. The rigor
of our computer proof imposed a strict separation between the two.

We developed a purely combinatorial theory of planarity based on
a symmetrical presentation of hypermaps, which greatly simplified the
proof. The theory supplies an elegant analogue of the Jordan Curve prop-
erty, which allowed us to prove the Theorem under minimal topological
assumptions, without appealing to Jordan Curve theorem.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, p. 333, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Computation of Elimination Ideals of

Boolean Polynomial Rings

Yosuke Sato1, Akira Nagai2, and Shutaro Inoue3

1 Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo, Japan
ysato@rs.kagu.tus.ac.jp

2 NTT Information Sharing Platform Laboratories,
3-9-11, Midorimachi, Musashino, Tokyo, Japan

nagai.akira@lab.ntt.co.jp
3 Tokyo Universityy of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo, Japan

inoue@mi.kagu.tus.ac.jp

Abstract. In order to compute an eliminate portion of a given polyno-
mial ideal by a Gröbner basis computation, we usually need to compute
a Gröbner basis of the whole ideal with respect to some proper term
order. In a boolean polynomial ring, we show that we can compute an
eliminate portion by computing Gröbner bases in the boolean polyno-
mial ring with the same coefficient ring that has the only variables which
we want to eliminate. We also check the efficiency of our method through
our implementation.

Keywords: Boolean Gröbner Bases.

1 Introduction

For solving polynomial equations, Gröbner bases computation is a powerful tool.
Though Gröbner bases were originally introduced by B.Buchberger in polynomial
rings over fields([1]), there also have been done many works concerning Gröbner
bases of polynomial rings with coefficient rings that are not fields. Among them
Gröbner bases of boolean polynomial rings (boolean Gröbner bases) introduced in
[8,9] have a nice property.

In computation of a Gröbner basis, selection of the term order dramatically
affects the computation cost both for time and space. In a polynomial ring over a
field, a total degree reverse lexicographic term order is usually the least expensive
one. In most cases, a purely lexicographic term order is much more expensive.
In a boolean polynomial ring, however, according to the data we got through
many computation experiments of boolean Gröbner bases, computation costs of
a purely lexicographic term order and other term orders such as a total degree
reverse lexicographic term order are not much different as far as we keep the order
of each variable. This property is extremely pleasant, since a purely lexicographic
term order is most convenient when we compute an eliminate portion of a given
ideal. In a boolean polynomial ring, we also have a nice classical result, namely
boolean extension theorem, that is we can always extend a zero of the elimination
ideal to a zero of the whole ideal. (See Theorem 6 for more details.) These

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 334–348, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Computation of Elimination Ideals of Boolean Polynomial Rings 335

properties enable us to handle boolean equations completely with computation
of elimination ideals by boolean Gröbner bases. In fact, “Set Constraint Solvers”
that is a free software developed by Y.Sato([10,12]), employs a naive but efficient
algorithm for the computation of the eliminate portion of a given ideal. For an
ideal I of a boolean polynomial ring B(X1, . . . , Xn)(precise definition is given
in Definition 4), the program computes a boolean Gröbner basis of I w.r.t. the
purely lexicographic term order such that Xn > · · · > X1 in order to compute
the elimination ideals I∩B(X1, . . . , Xi) for all i = 1, . . . , n − 1 simultaneously.

Besides the naive algorithm, we have an another algorithm for elimination
ideals which is based on the computation of comprehensive Gröbner bases. Unlike
in polynomial rings over fields, construction of comprehensive Gröbner bases is
very simple in boolean polynomial rings. Since a boolean polynomial ring is also
a boolean ring, a boolean polynomial ring B(Ā, X̄) with variables Ā and X̄

can be considered as a boolean polynomial ring (B(Ā))(X̄) over the coefficient
boolean ring B(Ā). Given an ideal I of B(Ā, X̄) and a term order of variables
X̄. Let G be a boolean Gröbner basis of I in (B(Ā))(X̄), then G becomes a
comprehensive Gröbner basis of I with parameters Ā. (See Theorem 24 for more
details.) In the view of construction of elimination ideals, the important fact
is that G∩B(Ā) is either an empty set or a singleton of a boolean polynomial
f(Ā) of B(Ā). In case of an empty set, the eliminate portion I∩B(Ā) is equal
to {0}, otherwise it is equal to the ideal 〈f(Ā)〉 in B(Ā). Unfortunately, in
most cases, a naive algorithm to construct the above G is much more expensive
than the computation of boolean Gröbner basis of I in B(Ā, X̄) w.r.t. a purely
lexicographic term order such that X̄ > Ā. Though there is a work concerning
efficient computations of comprehensive Gröbner bases([7]), it is based on the
computation of boolean Gröbner bases in a boolean polynomial ring B(Ā, X̄),
and it does not give us a more efficient algorithm for computation of elimination
ideals than the naive algorithm employed in “Set Constraint Solvers”.

In this paper, we show that for a given ideal I = 〈f1(Ā, X̄), . . . , fl(Ā, X̄)〉 in a
boolean polynomial ring B(Ā, X̄), we can construct the elimination ideal I∩B(Ā)
by computing a boolean Gröbner basis of the ideal 〈f1(c̄, X̄), . . . , fl(c̄, X̄)〉 in
the boolean polynomial ring B(X̄) for each 0, 1 specialization c̄ of Ā. We also
give some example of our computation experiments to show that our method is
quite effective in case we do not have many parameters.

Our plan is as follows. In section 2, we show two classical results of boolean
algebra which we need for understanding our work.

We give a quick review of boolean Gröbner bases and comprehensive boolean
Gröbner bases in section 3 and 4. Section 5 is devoted to our new algorithm for
the computation of elimination ideals.

2 Boolean Polynomial Ring

In this section, we show two classical results of boolean algebra in terms of
boolean polynomial rings. More details can be found in many text books of
boolean algebra such as [6] for example.

336 Y. Sato, A. Nagai, and S. Inoue

Definition 1. A commutative ring B with an identity 1 is called a boolean ring
if every element a of B is idempotent, i.e. a2 = a.

〈B,∨,∧,¬〉 becomes a boolean algebra with the boolean operations ∨,∧,¬ de-
fined by a ∨ b = a + b + a · b, a ∧ b = a · b,¬a = 1 + a. Conversely, for a boolean
algebra 〈B,∨,∧,¬〉, if we define + and · by a + b = (¬a ∧ b) ∨ (a ∧ ¬b) and
a · b = a ∧ b, 〈B,+, ·〉 becomes a boolean ring. We use the symbol 5 to denote a
partial order of a boolean ring, that is a 5 b if and only if ab = b for elements
a, b of a boolean ring B.

Since −a = a in a boolean ring, we do not need to use the symbol ’−’, however,
we also use − when we want to stress its meaning.

Definition 2. A non-zero element e of a boolean ring B is said to be atomic, if
there does not exist a non-zero element c such that ce = c except for c = e. (An
atomic element is nothing but a non-zero minimal element w.r.t. 5.)

Lemma 3. If B is a finite boolean ring, it has at least one atomic element. Let
e1, . . . , ek be all the atomic elements of B, then eiej = 0 for any i
= j and
e1 + · · · + ek = 1.

proof. We show the last equation, the rests are obvious. If e1 + · · · + ek
= 1,
e1 + · · · + ek + 1
= 0. Let c be a minimal element(an atomic element) of B
such that e1 + · · · + ek + 1 5 c, i.e. c(e1 + · · · + ek + 1) = c. It follows that
c(e1 + · · ·+ek) = 0. Since c is a minimal element, c = ei for some ei, which leads
us to a contradiction ei = ei(e1 + · · · + ek) = 0. �
Definition 4. Let B be a boolean ring. A quotient ring B[X1, . . . , Xn]/〈X2

1 −
X1, . . . , X

2
n −Xn〉 with an ideal 〈X2

1 −X1, . . . , X
2
n −Xn〉 becomes a boolean ring.

It is called a boolean polynomial ring and denoted by B(X1, . . . , Xn), its element
is called a boolean polynomial.

Note that a boolean polynomial of B(X1, . . . , Xn) is uniquely represented by a
polynomial of B[X1, . . . , Xn] that has at most degree 1 for each variable Xi. In
what follows, we identify a boolean polynomial with such a representation.

Multiple variables such as X1, . . . , Xn or Y1, . . . , Ym are abbreviated to X̄

or Ȳ respectively. Lower small Greek letters such as a, b, c are usually used for
elements of a boolean ring B. The symbol ā denotes an n-tuple of element of B
for some n. For ā = (a1, . . . , an) and b̄ = (b1, . . . , bm), (ā, b̄) denotes an n + m-
tuple (a1, . . . , an, b1, . . . , bm). For a boolean polynomial f(X̄, Ȳ) with variables
X̄ and Ȳ , f(ā, Ȳ) denote a boolean polynomial in B(Ȳ) obtained by specializing
X̄ with ā.

Definition 5. Let I be an ideal of B(X1, . . . , Xn). For a subset S of B, VS(I)
denotes a subset {ā ∈ Sn|∀f ∈ If(ā) = 0}. When S = B, VB(I) is simply
denoted by V (I) and called a variety of I. We say I is satisfiable in S if VS(I)
is not empty. When S = B, we simply say I is satisfiable.

Theorem 6 (boolean extension theorem). Let I be a finitely generated
ideal in a boolean polynomial ring B(Y1, . . . , Ym, X1, . . . , Xn).

For any b̄ ∈ V (I ∩ B(Ȳ)), there exist c̄ ∈ Bn such that (b̄, c̄) ∈ V (I).

On the Computation of Elimination Ideals of Boolean Polynomial Rings 337

Proof. It suffices to show the theorem for n = 1. Note first that any finitely
generated ideal is principal in a boolean ring, that is an ideal 〈f1, . . . , fs〉 is equal
to the principal ideal 〈f1 ∨· · ·∨fs〉. Let I = 〈fX1 +g〉 for some f, g ∈ B(Ȳ). We
claim that I∩B(Ȳ) = 〈fg+g〉. Since (f+1)(fX1+g) = fg+g, fg+g ∈ I∩B(Ȳ).
Conversely, suppose that h ∈ I ∩ B(Ȳ), i.e. there exist p, q ∈ B(Ȳ) such that
h = (pX1 + q)(fX1 + g). Then, h = (pf + pg + qf)X1 + qg. Since h ∈ B(Ȳ), we
must have pf + pg + qf = 0, from which we have h = qg = fqg + (f + 1)qg =
g(pf+pg)+(f+1)qg = gp(f +1)+(f+1)qg = (p+q)(f +1)g ∈ 〈fg+g〉. Suppose
now that b̄ ∈ V (〈fg + g〉), that is f(b̄)g(b̄) + g(b̄) = 0. Let c = (f(b̄) + 1)d + g(b̄)
where d can be any element of B. Then f(b̄)c+ g(b̄) = f(b̄)g(b̄)+ g(b̄) = 0. That
is (b̄, c) ∈ V (I). �

Corollary 7 (boolean weak Nullstellensatz). For any finitely generated
ideal I of a boolean polynomial ring B(X1, . . . , Xn), the variety V (I)(⊆ Bn)
of I is an empty set if and only if there exists a non-zero constant element of B
in I.

Proof. If I∩B = {0}, the above proof also works to show that V (I)
= ∅. The
converse is trivial. �

Theorem 8 (boolean strong Nullstellensatz). Let I be a finitely generated
ideal of a boolean polynomial ring B(X1, . . . , Xn) such that V (I)
= ∅.

Then, for any boolean polynomial h(X̄) ∈ B(X̄),

h(X̄) ∈ I if and only if ∀(b̄) ∈ V (I) h(b̄) = 0.

Proof. Let I = 〈f(X̄)〉 and B′ be a boolean subring of B generated by all
coefficients of f(X̄) and h(X̄), i.e. B′ is the smallest boolean subring of B which
includes all coefficients of f(X̄) and h(X̄). First note that I is also satisfiable
in B′ by boolean weak Nullstellensatz. Secondly note that B′ is finite, because
each element of B′ is a sum of finite elements which have a form an1

1 an2
2 · · · anl

l

where a1, a2, . . . , al are coefficients of f(X̄) and each ni is either 0 or 1. By
Lemma 3, B′ has atomic elements e1, . . . , ek such that eiej = 0 for any i
= j

and e1 + · · · + ek = 1. Suppose now that ∀b̄ ∈ V (I) h(b̄) = 0. We certainly have
the property:

∀b̄ ∈ B′n(f(b̄) = 0 ⇒ h(b̄) = 0) (1)

In order to show h(X̄) ∈ I, we prove the following claims.

Claim 1: f(b1, . . . , bn) = 0 ⇔ eif(eib1, . . . , eibn) = 0 for each i = 1, . . . , k.

Proof of Claim1. We clearly have f(b1, . . . , bn) = 0 ⇔ eif(b1, . . . , bn) = 0 for
each i = 1, . . . , k.We also have the equation eif(b1, . . . , bn) = eif(eib1, . . . , eibn).
The assertion follows from them. �
Claim 2: ∀(b1, . . . , bn) ∈ B′n(eif(eib1, . . . , eibn) = 0 ⇒ eih(eib1, . . . , eibn) = 0)
for each i = 1, . . . , k.

Proof of Claim2. Let i be fixed and suppose eif(eib1, . . . , eibn) = 0 for ele-
ments b1, . . . , bn in B′. Since I is satisfiable in B′, we have elements c1, . . . , cn

338 Y. Sato, A. Nagai, and S. Inoue

in B′ such that f(c1, . . . , cn) = 0. Let aj = eibj + (1 + ei)cj for each j =
1, . . . , n. Then, we have eiaj = eibj and etaj = etcj for each t
= i. By Claim
1, we have f(a1, . . . , an) = 0. By the property (1), we have h(a1, . . . , an) =
0. By Claim 1 again, we have eih(eia1, . . . , eian) = 0 which is equivalent to
eih(eib1, . . . , eibn) = 0. �
Claim 3: The ideal 〈eif(X̄), ei(Uh(X̄) + 1)〉 ⊆ B′(U, X̄) is unsatisfiable in B′

for each i = 1, . . . , k, where U is a new variable.

Proof of Claim3. Assume that eif(b1, . . . , bn) = 0 for some (b1, . . . , bn) ∈ B′n.
By Claim 1, we have eif(eib1, . . . , eibn) = 0. By Claim 2, we have eih(eib1, . . . ,

eibn) = 0. By Claim 1 again, we have eih(b1, . . . , bn) = 0.
Therefore ei(Uh(b1, . . . , bn) + 1) = ei
= 0. �

By the last claim and boolean weak Nullstellensatz, we can see the ideal 〈eif(X̄),
ei(Uh(X̄)+1)〉 contains a non-zero element of B′. Since ei is an atomic element of
B′, it must contain ei. So, there exist boolean polynomials p(U, X̄) and q(U, X̄)
of B′(U, X̄) such that ei = eif(X̄)p(U, X̄) + ei(Uh(X̄) + 1)q(U, X̄).

Multiplying h(X̄) from both sides and substituting U by 1, we have eih(X̄) =
eif(X̄)p(1, X̄)h(X̄), which shows that eih(X̄) ∈ I. So, h(X̄) = e1h(X̄) + · · · +
ekh(X̄) ∈ I.

The converse is trivial. �

3 Boolean Gröbner Bases

A boolean Gröbner basis is defined as a natural modification of a Gröbner basis
in a polynomial ring over a boolean ring. Though it was introduced in [8,9]
together with a computation algorithm using a special monomial reduction, the
same notion was independently discovered by V.Weispfenning in a polynomial
ring over a more general coefficient ring, namely, a commutative von Neumann
regular ring([15]). In this section, we give a quick review of boolean Gröbner
bases. For the proofs and more detailed descriptions, refer to [15] or [11].

We concentrate on boolean rings. In what follows, we assume that some term
order on a set of power products of variables is given. For a polynomial f in
a polynomial ring B[X1, . . . , Xn] (= B[X̄]) over a boolean ring B, we use the
notations LT (f), LM(f) and LC(f) to denote the leading power product, the
leading monomial and leading coefficient of f respectively. f − LM(f) is also
denoted by Rd(f). We also use the notations LT (F) and LM(F) to denote the
sets {LT (f)|f ∈ F} and {LM(f)|f ∈ F} for a (possibly infinite) subset F of
B[X̄]. T (X̄) denotes the set of power products consisting of variables X̄ .
Definition 9. For an ideal I of a polynomial ring B[X̄], a finite subset G of I

is called a Gröbner basis of I if 〈LM(I)〉 = 〈LM(G)〉.
Definition 10. For a polynomial f ∈ B[X̄], let a = LC(f), t = LT (f) and
h = Rd(f). A monomial reduction →f by f is defined as follows:

bts + p →f (1 − a)bts + absh + p.

(Note that (bts + p) − ((1 − a)bts + absh + p) = bs(af).)

On the Computation of Elimination Ideals of Boolean Polynomial Rings 339

Where s is a term of T (X̄), b is an element of B such that ab
= 0 and p is
any polynomial of B[X̄]. For a set F ⊆ B[X̄], we write g →F g′ if and only
if g →f g′ for some f ∈ F . A recursive closure of →F is denoted by ∗→F , i.e.
g

∗→F g′ if and only if g = g′ or there exist a sequence of monomial reductions
g →F g1 →F · · · →F gn →F g′.

Theorem 11. When F is finite, →F is noetherian, that is there is no infinite
sequence of polynomials g1, g2, . . . such that gi →F gi+1 for each i = 1, 2,

Theorem 12. Let I be an ideal of a polynomial ring B[X̄].
A finite subset G of I is a Gröbner basis of I if and only if ∀h ∈ I h

∗→G 0.

Using our monomial reductions, a reduced Gröbner basis is defined exactly same
as in a polynomial ring over a field. A Gröbner basis G is reduced if each poly-
nomial of G is not reducible by a monomial reduction of any other polynomial
of G. In a polynomial ring over a field, a reduced Gröbner basis is uniquely
determined. In our case, however, this property does not hold.

Example 1. Let B = GF2×GF2. In a polynomial ring B[X], {(1, 0)X, (0, 1)X}
and {(1, 1)X} are both reduced Gröbner bases of the same ideal.

In order to have a unique Gröbner basis, we need one more definition.

Definition 13. A reduced Gröbner basis G is said to be stratified if G does not
contain two polynomials which have the same leading power product.

Theorem 14. If G and G′ are stratified Gröbner bases of the same ideal w.r.t.
some term order, then G = G′.

In the above example, {(1, 1)X} is the stratified Gröbner basis, but the other is
not.

Definition 15. For a polynomial f , LC(f)f is called a boolean closure of f ,
and denoted by bc(f). If f = bc(f), f is said to be boolean closed.

Theorem 16. Let G be a Gröbner basis of an ideal I, then {bc(g)|g ∈ G} \ {0}
is also a Gröbner basis of an ideal I.

S-polynomial is also defined similarly as in a polynomial ring over a field.

Definition 17. Let f = atr + f ′ and g = bsr + g′ be polynomials where a =
LC(f), b = LC(g), tr = LT (f) and sr = LT (g) for some power product t, s, r

such that GCD(t, s) = 1, i.e. t and s do not contain a common variable. The
polynomial bsf + atg = bsf ′ + atg′ is called an S-polynomial of f and g and
denoted by S(f, g).

As in a polynomial ring over a field, the following property is crucial for the
construction of Gröbner bases.

Theorem 18. Let G be a finite set of polynomials such that each element of G

is boolean closed. Then, G is a Gröbner basis if and only if S(f, g) ∗→G 0 for any
pair f, g of G.

340 Y. Sato, A. Nagai, and S. Inoue

For any given finite set F , using our monomial reductions, we can always con-
struct a Gröbner basis of 〈F 〉 with computing boolean closures and S-polynomials
by the following algorithms. It is also easy to construct a stratified Gröbner basis
from a Gröbner basis.

Algorithm BC
Input: F a finite subset of B[X̄]
Output: F ′ a set of boolean closed polynomials such that 〈F ′〉 = 〈F 〉
begin
F ′ = ∅
while there exists a polynomial f ∈ F which is not boolean closed

F = F ∪ {bc(f) − f} \ {f}, F ′ = F ′ ∪ {bc(f)}
end.

Algorithm GBasis
Input: F a finite subset of B[X̄], > a term order of T (X̄)
Output: G a Gröbner basis of 〈F 〉 w.r.t. >

begin
G = BC(F)
while there exists two polynomials p, q ∈ G such that S(p, q) ∗→G h

for some non-zero polynomial h which is irreducible by →G

G = G∪BC({h})
end.

Since any element of a boolean ring is idempotent, a boolean polynomial ring is
more natural to work on. We can also define Gröbner bases in boolean polyno-
mial rings.

A power product X
l1
1 · · ·X ln

n is called a boolean power product if each li is either
0 or 1. The set of all boolean power products consisting of variables X̄ is denoted
by BT (X̄). A boolean polynomial f(X̄) in B(X̄) is uniquely represented by
b1t1+· · ·+bktk with elements b1, . . . , bk of B and distinct boolean power products
t1, . . . , tk. We call b1t1 + · · · + bktk the canonical representation of f(X̄). Since
BT (X̄) is a subset of T (X̄), a term order ≥ on T (X̄) is also defined on BT (X̄).
Given such a term order ≥, we use the same notations LT (f), LM(f), LC(f) and
Rd(f) as before, which are defined by using its canonical representation. We also
use the same notations LT (F) and LM(F) for a set F of boolean polynomials
as before.

Definition 19. For an ideal I of a boolean polynomial ring B(X̄), a finite subset
G of I is called a boolean Gröbner basis of I if 〈LM(I)〉 = 〈LM(G)〉 in B(X̄).

Using canonical representations of boolean polynomials, we can also define mono-
mial reductions for boolean polynomials as Definition 10 and have the same
property of Theorem 12. The boolean closure of a boolean polynomial is also
similarly defined as Definition 15 and the same property of Theorem 16 holds.

On the Computation of Elimination Ideals of Boolean Polynomial Rings 341

We can also define a stratified boolean Gröbner basis as in Definition 13, which
is unique w.r.t. a term order. Construction of a boolean Gröbner basis is very
simple. Given a finite set of boolean polynomials F ⊆ B(X̄). Compute a Gröbner
basis G of the ideal 〈F ∪{X2

1 −X1, . . . , X
2
n −Xn}〉 in B[X̄] w.r.t. the same term

order. Then, G \ {X2
1 − X1, . . . , X

2
n − Xn} is a boolean Gröbner basis of 〈F 〉 in

B(X̄). If G is stratified, then G \ {X2
1 − X1, . . . , X

2
n − Xn} is also stratified.

Example 2. The following left constraint with unknown set variables X and Y

and an unknown element variable a is equivalent to the right system of equations
of a boolean polynomial ring B(X, Y, A), where B is a boolean ring of sets and
the variable A stands for the singleton {a}.
⎧
⎪⎪⎨

⎪⎪⎩

X ∪ Y ⊆ {1, 2}
1 ∈ X

a ∈ Y

X ∩ Y = ∅
⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

(XY + X + Y) + {1, 2}(XY + X + Y) = 0
{1}X + {1} = 0
AY + A = 0
XY = 0

The stratified boolean Gröbner basis G of the ideal

I = 〈(XY + X + Y) + {1, 2}(XY + X + Y), {1}X + {1}, AY + A, XY 〉
w.r.t. a lexicographic term order X > Y > A has the following form:

G = {{2}XY, {2}YA+{2}A, (1+{2})Y, {2}XA, (1+{2})X+{1}, (1+{2})A}.
From this we can get the elimination ideal I∩B(A) = 〈(1 + {2})A〉. By boolean
extension theorem, we can see that the given constraint is satisfiable if and only
if the element variable a satisfies the equation (1 + {2}){a} = 0 that is a = 2.

We conclude this section with the following theorem, which is essentially a special
instance of Theorem 2.3 of [15].

Definition 20. Let B be a boolean ring and k be a natural number. Bk denotes
a direct product, i.e. the set of all k-tuples of elements of B. For an element p of
Bk, pi ∈ B denotes the i-th element of p for each i = 1, . . . , k. If we define p+ q

and p·q for p, q ∈ Bk by (p+q)i = pi+qi and (p·q)i = pi ·qi for each i = 1, . . . , k,
Bk also becomes a boolean ring. For a polynomial f(X̄) in Bk[X̄] fi(i = 1, . . . , k)
denotes the polynomial in B[X̄] obtained by replacing each coefficient p of f by
pi. For a boolean polynomial f(X̄) in Bk(X̄), a boolean polynomial fi in B(X̄)
is defined similarly.

Theorem 21. In a polynomial ring Bk[X̄], let G be a finite set of boolean closed
polynomials. Then, G is a (reduced) Gröbner basis of an ideal I if and only if
Gi = {gi|g ∈ G} \ {0} is a (reduced) Gröbner basis of the ideal Ii = {fi|f ∈ I}
in B[X̄] for each i = 1, . . . , k.

Corollary 22. In a boolean polynomial ring Bi(X̄), let G be a finite set of
boolean closed boolean polynomials. Then, G is a (reduced) boolean Gröbner basis
of an ideal I if and only if Gi = {gi|g ∈ G} \ {0} is a (reduced) Gröbner basis of
the ideal Ii = {fi|f ∈ I} in B(X̄) for each i = 1, . . . , k.

342 Y. Sato, A. Nagai, and S. Inoue

4 Comprehensive Boolean Gröbner Bases

In a polynomial ring over a field, construction of a comprehensive Gröbner basis
is not so simple in general. In order to get a uniform (with respect to parameters)
representation of reduced Gröbner bases, we need to divide a parameter space
into several partitions according to the conditions that parameters satisfy. (See
[2,4,5,13,14,16].)

In our boolean polynomial ring, however, we can always construct a strat-
ified comprehensive boolean Gröbner basis. We do not even need to divide a
parameter space.

In this section, we present a naive method to construct comprehensive boolean
Gröbner bases. In what follows, we use variables Ā = A1, . . . , Am for parameters
and variables X̄ = X1, . . . , Xn for main variables. We also assume that some
term order on T (X̄) is given.

Definition 23. Let F = {f1(Ā, X̄), . . . , fl(Ā, X̄)} be a finite subset of a boolean
polynomial ring B(Ā, X̄). A finite subset G = {g1(Ā, X̄), . . . , gk(Ā, X̄)} of
B(Ā, X̄) is called a comprehensive boolean Gröbner basis of F , if G(ā) =
{g1(ā, X̄),. . . , gk(ā, X̄)} \ {0} is a boolean Gröbner basis of the ideal 〈F (ā)〉 =
〈f1(ā, X̄), . . . , fl(ā, X̄)〉 in B′(X̄) for any boolean extension B′ of B, i.e. a
boolean ring which includes B as a subring, and any ā = (a1, . . . , am) ∈ B′m. G

is also said to be stratified if G(ā) is stratified for any ā = (a1, . . . , am) ∈ B′m.

Theorem 24. Let F = {f1(Ā, X̄), . . . , fl(Ā, X̄)} be a finite subset of a boolean
polynomial ring B(Ā, X̄). Considering B(Ā, X̄) as a boolean polynomial ring
(B(Ā))(X̄) with the coefficient boolean ring B(Ā), let G = {g1(Ā, X̄), . . . , gk(Ā,

X̄)} be a (stratified) boolean Gröbner basis of the ideal 〈F 〉 in this polynomial
ring. Then G becomes a (stratified) comprehensive boolean Gröbner basis of F .

Proof. Let ā = a1, . . . , am be an arbitrary m-tuple of elements of B′. Note
that the specialization of parameters Ā with ā induces a homomorphism from
B(Ā, X̄) to B′(X̄). We clearly have 〈F (ā)〉 = 〈G(ā)〉 in B′(X̄).

If f(Ā, X̄) →g(Ā,X̄) h(Ā, X̄) in (B(Ā))(X̄), then f(Ā, X̄) = p(Ā)ts+f ′(Ā, X̄),
g(Ā, X̄) = q(Ā)t+g′(Ā, X̄) and h(Ā, X̄) = (1−q(Ā))p(Ā)ts+q(Ā)p(Ā)sg′(Ā, X̄)
+f ′(Ā, X̄) for some t, s ∈ T (X̄) and p(Ā), q(Ā) ∈ B(Ā) and f ′(Ā, X̄), g′(Ā, X̄)
∈ B(Ā, X̄), where q(Ā)t is the boolean leading monomial of g(Ā, X̄). In case
q(ā)p(ā)
= 0, certainly q(ā)
= 0 and p(ā)
= 0, so q(ā)t is the boolean leading
monomial of g(ā, X̄) and p(ā)ts is a monomial of f(Ā, X̄) and f(ā, X̄) →g(ā,X̄)

h(ā, X̄). Otherwise, h(ā, X̄) = f(ā, X̄). In either case, we have f(ā, X̄) ∗→g(ā,X̄)

h(ā, X̄). Therefore, if f(Ā, X̄) →G h(Ā, X̄) in (B(Ā))(X̄), then we have
f(ā, X̄) ∗→G(ā) h(ā, X̄) in B′(X̄). Any boolean polynomial in the ideal 〈F (ā)〉
is equal to f(ā, X̄) for some boolean polynomial f(Ā, X̄) in the ideal 〈F 〉 of
(B(Ā))(X̄). Since G is a boolean Gröbner basis of 〈F 〉, we have f(Ā, X̄) ∗→G 0.
By the above observation, we have f(ā, X̄) ∗→G(ā) 0. This shows that G is a
comprehensive boolean Gröbner basis of F .

On the Computation of Elimination Ideals of Boolean Polynomial Rings 343

Suppose G is stratified, then any element g of G is boolean closed.
So, if LC(g)(ā) = 0, then g(ā, X̄) must be equal to 0. Therefore, unless

g(ā, X̄) = 0, we have LT (g(ā, X̄)) = LT (g(Ā, X̄)). Now it is clear that G(ā)
is stratified. �

Example 3. For the same example of Example 2, the stratified boolean Gröbner
basis of I in the boolean polynomial ring (B(A))(X, Y) has the following form:
{({2}A+{2})XY, (1+A+{2})X+{1}A+{1}, (1+A+{2})Y +{2}A, (1+{2})A}.
From this, we can get the elimination ideal I∩B(A) = 〈(1 + {2})A〉. Moreover,
if we specialize the variable A with {a}, it becomes the stratified boolean Gröbner
basis {X + {1}, Y + {2}}.

5 New Algorithm for Elimination Ideals

In section 2, we saw the importance of ideals in boolean polynomial rings.
For a system of boolean equations given in a form of

⎧
⎪⎨

⎪⎩

f1(X1, X2, . . . , Xn) = 0
... · · · (1)

fl(X1, X2, . . . , Xn) = 0

with boolean polynomials f1(X̄), f2(X̄), . . . , fl(X̄) of B(X̄), we can solve it by
computing a stratified boolean Gröbner basis of the ideal I = 〈f1(X̄), f2(X̄), . . . ,
fl(X̄)〉 w.r.t. a certain term order. We can also solve many problems concern-
ing it. For example, if we want to decide whether a given boolean polyno-
mial h(X̄) vanishes on every solutions, what we have to do is computing a
boolean Gröbner basis G of I(w.r.t. any term order) and checking the nor-
mal form of h(X̄) by →G is 0 or not. In any case, as long as we can com-
pute a boolean Gröbner basis of I, we are almost done. Unfortunately, however,
Gröbner bases computations are getting heavier when the number of variables
increases. If we are interested in only solutions of some restricted variables, say
X1, X2, X3 for example, we do not necessarily need a boolean Gröbner basis of
the whole ideal I, what we need is a boolean Gröbner basis of the elimination
ideal 〈f1(X̄), f2(X̄), . . . , fl(X̄)〉∩B(X1, X2, X3). If we want to know whether a
given polynomial h(X1, X2, X3) consisting of only three variables X1, X2, X3

vanishes on every solution of (1), what we need is not a boolean Gröbner basis
of the whole ideal but a boolean Gröbner basis of the above elimination ideal. A
Gröbner basis of such an elimination ideal is usually obtained by computing a
Gröbner basis of the whole ideal w.r.t. a block order X1, X2, X3 << X4, . . . , Xn,
i.e. a term order such that each variable X1, X2, X3 is lexicographically less than
the other variables.

In this section, we give an algorithm to compute a boolean Gröbner basis of
an elimination ideal without computing a boolean Gröbner basis of the whole
ideal. The next lemma is an easy but important key fact for our algorithm.

344 Y. Sato, A. Nagai, and S. Inoue

Lemma 25. Let I be an ideal of a boolean polynomial ring B(Ā, X̄) with vari-
ables Ā and X̄, G be a stratified boolean Gröbner basis of I in a boolean polyno-
mial ring (B(Ā))(X̄) w.r.t. some term order of T (X̄). Then G∩B(Ā) is either
an empty set or a singleton {h(Ā)} of a boolean polynomial of B(Ā). In the latter
case, the elimination ideal I∩B(Ā) is equal to 〈h(Ā)〉, otherwise it is equal to
the trivial ideal {0} in B(Ā).

If the computation of such a G were faster than the computation of a boolean
Gröbner basis of I in the boolean polynomial ring B(Ā, X̄) w.r.t. a block order
Ā << X̄ , it would give us a more efficient algorithm to compute a boolean
Gröbner basis of the elimination ideal. Unfortunately, however, a naive method
described in section 4 is much slower than the computation of a boolean Gröbner
basis of I w.r.t. such a block order in general. Though there is a work concerning
an efficient computation algorithm for such a G, it is based on the computation
of a boolean Gröbner basis of the whole ideal w.r.t. a block order([7]).

In this section, we give a new approach to compute an elimination ideal
I∩B(Ā). The key fact is the following lemma concerning the structure of a
boolean polynomial ring B(Ā).

Lemma 26. A boolean polynomial ring B(A1, . . . , Am) is isomorphic to the di-
rect product B2m

. An isomorphism φ from B(A1, . . . , Am) to B2m

is given by
φ(f(A1, . . . , Am))i = f(ci

1, . . . , c
i
m) for each i = 1, . . . , 2m, where ci

1 · · · ci
m is a bi-

nary number representation of i−1. The inverse of φ is given by φ−1((a1, a2, . . . ,

a2m)) =
∑2m

i=1 ai(A1 +ci
1+1)(A2+ci

2+1) · · · (Am +ci
m+1). (Note that ci

k +1 = 1
if ci

k = 0 and ci
k + 1 = 0 if ci

k = 1.)

Proof. Proof is by induction on m. We first show the lemma for m = 1. Any
boolean polynomial of B(A1) has a form aA1 + b for some elements a and b

of B. By the definition, φ(aA1 + b))1 = b and φ(aA1 + b))2 = a + b, that is
φ(aA1 + b) = (b, a + b). It is easy to check that φ is a homomorphism. It is
also obvious that φ is a bijection. Let m > 1 and assume that the lemma
holds for m − 1. Note that any element of B(A1, . . . , Am) is uniquely repre-
sented as f(A2, . . . , Am)A1 + g(A2, . . . , Am) with some elements f(A2, . . . , Am)
and g(A2, . . . , Am) of B(A2, . . . , Am). Considering a boolean polynomial ring
B(A1, . . . , Am) as a boolean polynomial ring (B(A2, . . . , Am))(A1), it is isomor-
phic to B(A2, . . . , Am)2 with an isomorphism θ such that θ(f(A2, . . . , Am)A1 +
g(A2, . . . , Am)) = (g(A2, . . . , Am), f(A2, . . . , Am) + g(A2, . . . , Am) by the first
assertion we have shown above. By the assumption, we have an isomorphism
ψ from B(A2, . . . , Am) to B2m−1

given by ψ(f(A2, . . . , Am))i = f(c2, . . . , cm)
for each i = 1, . . . , 2m−1, where c2 · · · cm is a binary number representation
of i − 1. Now, a map φ from B(A1, . . . , Am) to B2m

defined by φ(f(Ā)) =
(ψ(θ(f(Ā))1), ψ(θ(f(Ā))2)) (the concatenation of two 2m−1-tuples ψ(θ(f(Ā))1)
and ψ(θ(f(Ā))2)) satisfies the property of the lemma.

The last assertion is obvious. �
This lemma together with Corollary 22 gives us a new algorithm to compute a
boolean Gröbner basis of an elimination ideal.

On the Computation of Elimination Ideals of Boolean Polynomial Rings 345

Algorithm ElimBGB
Input: F a finite subset of B(Ā, X̄),

Ā parameter variables, > a term order of T (Ā)
Output: G a boolean Gröbner basis of the elimination ideal 〈F 〉∩B(Ā)

w.r.t. >.
begin
F ′ = {φ(f)|f ∈ F}
For i = 1 to 2m, compute the stratified boolean Gröbner basis
Gi of the ideal generated by F ′

i = {fi ∈B(Ā)|f ∈ F ′} w.r.t.
any term order of T (X̄).

For i = 1 to 2m, if Gi contains a non-zero element of B
then bi = such an element, else bi = 0.

G = a boolean Gröbner basis of the ideal 〈φ−1((b1, . . . , b2m))〉
w.r.t. >.

end.

In the above, φ is an isomorphism from (B(A1, . . . , Am))(X̄) to B2m

(X̄) ob-
tained as an extension of the isomorphism defined in Lemma 26.

We implemented the algorithm for a boolean ring B = {S ⊆ St|S is a finite
or co-finite set}, where St denotes a countable set of all strings.

We show how our algorithm works using an example of our computation.
In the following example, we have 30 variables X1, . . . , X30. a, b, . . . , t denote
strings, so {d, p}, {a, b}, . . . are elements of our B.

Example 4. Compute the eliminate portion 〈F 〉∩B(X1, X2, X3) for
F = {f1(X̄), f2(X̄), . . . , f18(X̄)} with
f1(X̄) = X1X3X18 + {d, p}X4X18X20 + X11X13 + {a, b}X6X10 + X5X18 + X4,

f2(X̄) = X2X5 +X4X5 +{k, q}X6X8 +X1X26X27+{c, k}X4X8 +X10+X6X10,

f3(X̄) = X1X2X4 + X3X5X10 + {d, i}X11 + X1 + X5 + X12X24X28,

f4(X̄) = X2X4 + {e, g}X3X4 + X1X12 + X12X15 + X5X10X12 + X3X11,

f5(X̄) = X1X3 + X1X5 + {j, l}X2X5X16 + X11X12 + X11X23 + X16 + 1,

f6(X̄) = X6X17 + X5X9X30 + {a, c}X8X10 + X1X12 + X25X29,

f7(X̄) = X1X11 + X12 + X2X8 + X3X11X12 + X11X12 + X4X6 + {b, e},
f8(X̄) = X2 + X4X7 + {c, f}X12X17X21 + X2X3X12 + X6X7 + X12 + X4X25 +

X1X11,

f9(X̄) = X3 + X3X4 + {k, m}X1X3 + X5X6 + {h, i}X7X24,

f10(X̄) = X1 + {g, i}X4X5X11 + {m, r}X1X9X11 + X2X6 + X11 + 1,

f11(X̄) = X3X20 + X5 + X7X5 + X11 + {l, o, s}X13X30 + X11X18X23,

f12(X̄) = X3X14 + {f, n, t}X1X2 + X2 + X11 + X11X15 + X19X22,

f13(X̄) = X2X7 + {f, j}X11 + X2X3 + X11X12 + X9X13 + X13,

f14(X̄) = X3X7 + X8 + {d, o}X8X13 + {c, t}X2X23 + X3X20X22 + 1,

f15(X̄) = X4X9 + X7X20 + {b, l}X8X19 + X20,

f16(X̄) = {a, e, n}X7X9 + X3X5 + X6X22 + {e, r}X18X29 + X19X21,

f17(X̄) = X3 + X14 + X17X18 + X3X4X19,

f18(X̄) = X7 + X7X21 + X23X24}.

346 Y. Sato, A. Nagai, and S. Inoue

We apply the algorithm ElimBGB for F where X1, X2, X3 are parameters and
we use a purely lexicographic term order such that X1 < X2 < X3.

The isomorphism φ from B(X1, X2, X3) to B8 is given by φ(f(X1, X2, X3)) =
(f(0, 0, 0), f(0, 0, 1), f(0, 1, 0), f(0, 1, 1), f(1, 0, 0), f(1, 0, 1), f(1, 1, 0), f(1, 1, 1)).

F ′
1 = {f1(0, 0, 0, X4, . . . , X30), . . . , f18(0, 0, 0, X4, . . . , X30)}

F ′
2 = {f1(0, 0, 1, X4, . . . , X30), . . . , f18(0, 0, 1, X4, . . . , X30)}

...
F ′

8 = {f1(1, 1, 1, X4, . . . , X30), . . . , f18(1, 1, 1, X4, . . . , X30)}

Computation of a stratified boolean Gröbner basis for each F ′
i yields

b1 = 0, b2 = {i}, b3 = {k, q}, b4 = 0, b5 = 0, b6 = 0, b7 = 0, b8 = 0.

φ−1((0, {i}, {k, q}, 0, 0, 0, 0, 0)) =
{i}(X1 + 1)(X2 + 1)X3 + {k, q}(X1 + 1)X2(X3 + 1).

We finally have a desired stratified boolean Gröbner basis
G = {{i, k, q}X1X2X3 + {i, k, q}X2X3 + {i}X1X3 + {i}X3

+{k, q}X1X2 + {k, q}X2}.

Total computation time is 274seconds by a PC with 1.7GHZ pentium-M CPU and
2GB SDRAM. Whereas, a boolean Gröbner basis computation w.r.t. any term
order did not terminate in hours, a comprehensive Gröbner basis computation
with parameters X1, X2, X3 did not either terminate in hours.

In the algorithm ElimBGB, if we use a proper term order of T (X̄) we can also get
other eliminate portions. In the above example, we used a purely lexicographic
term order such that X4 < X5 < X6 < · · · < X30. From G1, G2, . . . , G8, for
example, if we use Gi∩B(X4, X5) instead of using a constant part bi, we can
get an elimination ideal 〈F 〉∩B(X1, . . . , X5). From which, we can compute the
stratified boolean Gröbner basis G of the elimination ideal 〈F 〉∩B(X3, X4, X5)
w.r.t. a purely lexicographic term order X3 < X4 < X5.

G = {{s, b, i, k, c, e, f, t, m, l}X3X4X5 + {i}X4X5 + {s, b, k, c, e, f, t, m, l}X3X5

+{s, b, i, k, c, e, f, t, m, l}X3X4 + {i}X4 + {s, b, k, c, e, f, t, m, l}X3,

{o}X5X4 + {o}X3X5 + {o}X4 + {o}X3,

(1 + {s, b, i, k, c, h, e, f, t, m, l})X3X4 + (1 + {s, b, i, k, c, h, e, f, t, m, l})X3}

6 Conclusions and Remarks

What the algorithm ElimBG computes is essentially a comprehensive boolean
Gröbner basis of 〈F 〉 with parameters Ā. The possible values for each param-
eter are not only 0 and 1 but also all elements of B. In the example of the
last section, possible values for each parameter X1, X2, X3 are all the subsets
of {a, b, c, . . . , s, t} and their complements. So, there are (221)3 = 263-many pos-
sible cases for all specializations, where as there are only 8 cases for 0 and 1

On the Computation of Elimination Ideals of Boolean Polynomial Rings 347

specializations. In this sense, our algorithm is efficient. For m-many parameters,
however, our algorithm needs computations of 2m-many boolean Gröbner bases.
This is of course infeasible when m is big, our method is effective only when m

is small.
Complexity of boolean Gröbner bases computation is exponential in the num-

ber of variables in the worst case for both time and spaces. (So, the method based
on computations of boolean Gröbner bases is not quite unreasonable, since it is
an NP-hard problem to solve boolean equations.) Therefore, the method based
on the computation of boolean Gröbner bases w.r.t. some block order or the
naive method to compute comprehensive boolean Gröbner bases described in
section 4 should be more efficient than our method at least from the theoretical
point of view. (In case we have a parallel computation environment with enough
computer resources, it does not apply.) Nevertheless, our (sequential) computa-
tion experiments show the efficiency of our method. In the experiments, we used
randomly generated 32 sets of boolean polynomials with 20 to 30 variables with 5
parameters. For 15 examples, either a boolean Gröbner basis computation w.r.t.
a block order or a naive comprehensive boolean Gröbner basis computation did
not terminate in hours, whereas we successfully computed the elimination ideals
by our method for all examples.

The most important reason we are working on boolean Gröbner bases is that
they give us a canonical form of an ideal in a boolean polynomial ring. (See
[11] for a canonical boolean Gröbner basis besides a stratified boolean Gröbner
basis.) There are many other methods for solving boolean equations. Though we
introduced our method for the computation of boolean Gröbner bases, it can be
applied even for other computation methods for boolean equations such as an
algorithm in [3].

The results shown in Section 2 are very old classical results. The proof of
boolean strong Nullstellensatz is usually given by using Löwenheim’s formula.
We give a simple proof in this paper.

References

1. Buchberger, B.: Ein Algorithms zum Auffinden der Basiselemente des Restklassen-
rings bach einem nulldimensionalen Polynomial. Doctoral Dissertation Math. Inst.
University of Innsbruck, Austria (1965)

2. Kapur, D.: An Approach for Solving Systems of Parametric Polynomial Equa-
tions. In: Saraswat, Van Hentenryck (eds.) Principles and Practices of Constraint
Programming, pp. 217–244. MIT Press, Cambridge (1995)

3. Menju, S., Sakai, K., Sato, Y., Aiba, A.: A Study on Boolean Constraint Solvers.
Constraint Logic Programming Selected Research, pp. 253–267. MIT Press, Cam-
bridge (1993)

4. Montes, A.: A new algorithm for discussing Gröbner bases with parameters. J.
Symb. Comp. 33(2), 183–208 (2002)

5. Manubens, M., Montes, A.: Improving DISPGB algorithm using the discriminant
ideal. J. Symb. Comp. 41, 1245–1263 (2006)

6. Rudeanu, S.: Boolean functions and equations. North-Holland Publishing Co., Am-
sterdam. American Elsevier Publishing Co., Inc., New York (1974)

348 Y. Sato, A. Nagai, and S. Inoue

7. Sato, Y., Inoue, S.: On the Construction of Comprehensive Boolean Gröbner
Bases. In: Proceedings of the Seventh Asian Symposium on Computer Mathematics
(ASCM 2005), pp. 145–148 (2005)

8. Sakai, K., Sato, Y.: Boolean Gröbner bases. ICOT Technical Momorandum 488
(1988), http://www.icot.or.jp/ARCHIVE/Museum/TRTM/tm-list-E.html

9. Sakai, K., Sato, Y., Menju, S.: Boolean Gröbner bases (revised). ICOT Technical
Report 613 (1991),
http://www.icot.or.jp/ARCHIVE/Museum/TRTM/tr-list-E.html

10. Sato, Y., et al.: Set Constrains Solvers (Prolog version) (1996),
http://www.icot.or.jp/ARCHIVE/Museum/FUNDING/funding-96-E.html

11. Sato, Y.: A new type of canonical Gröbner bases in polynomial rings over Von
Neumann regular rings. In: Proceedings of ISSAC 1998, pp. 317–332. ACM Press,
New York (1998)

12. Sato, Y., et al.: Set Constrains Solvers (Klic version) (1998),
http://www.icot.or.jp/ARCHIVE/Museum/FUNDING/funding-98-E.html

13. Suzuki, A., Sato, Y.: An Alternative approach to Comprehensive Gröbner Bases.
J. Symb. Comp. 36(3-4), 649–667 (2003)

14. Suzuki, A., Sato, Y.: A Simple Algorithm to Compute Comprehensive Gröbner
Bases Using Gröbner Bases. In: International Symposium on Symbolic and Alge-
braic Computation (ISSAC 2006), Proceedings, pp. 326–331 (2006)

15. Weispfenning, V.: Gröbner bases in polynomial ideals over commutative regular
rings. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987. LNCS, vol. 378,
pp. 336–347. Springer, Heidelberg (1989)

16. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp. 14(1), 1–29
(1992)

http://www.icot.or.jp/ARCHIVE/Museum/TRTM/tm-list-E.html
http://www.icot.or.jp/ARCHIVE/Museum/TRTM/tr-list-E.html
http://www.icot.or.jp/ARCHIVE/Museum/FUNDING/funding-96-E.html
http://www.icot.or.jp/ARCHIVE/Museum/FUNDING/funding-98-E.html

Computer Search for Large Sets of Idempotent

Quasigroups�

Feifei Ma1,2 and Jian Zhang1

1 State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

2 Graduate University, Chinese Academy of Sciences
{maff,zj}@ios.ac.cn

Abstract. A collection of n − 2 idempotent quasigroups of order n is
called a large set if any two of them are disjoint, denoted by LIQ(n).
While the existence of ordinary LIQ(n) has been extensively studied, the
spectrums of large sets of idempotent quasigroups with various identities
remain open, for example, large set of Steiner pentagon quasigroups of
order 11 which is denoted by LSPQ(11). This paper describes some
computer searching efforts seeking to solve such problems. A series of
results are obtained, including the non-existence of LSPQ(11).

1 Introduction

The quasigroup problem has long been the focus of much interest in combina-
torics. Many classes of finite quasigroups attract such attention partly because
they are very natural objects in their own right and partly because they are
correlative to design theory. A number of hard combinatorial problems are also
raised by quasigroups. Over the last decade, the study of quasigroups has largely
benefited from the improvement of automated reasoning techniques. Many open
problems, to which the conventional mathematical methods are hard to apply,
have been solved by means of computer search. For example, a series of open
problems of the type from QG2 to QG9 were settled by several model gener-
ators such as MGTP,FINDER,SEM and the propositional satisfiability prover
SATO,DDPP respectively [4,8,12,10,11]. Later, the non-existence of QG2(10),
which used to be quite difficult, was established by Dubois et al. with their
specific-purpose program qgs [3]. In fact, quasigroups with certain identities are
highly structured. It is natural to translate the constraints for a quasigroup to
logic formulae or model it as a constraint satisfaction problem, which can be
effectively handled by these automatic tools.

A more challenging problem arising in this field is the large set problem for
various idempotent quasigroups. Unlike the above problems, we need to find a
set of quasigroups satisfying certain constraints rather than only one. Appar-
ently this is more difficult since the search space to be explored is exponentially
� This work is supported by the National Natural Science Foundation of China (NSFC)

under grant No. 60673044.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 349–358, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

350 F. Ma and J. Zhang

more huge. Lie Zhu summarized some open cases of such problems in [13] and
[14]. Using the first order model generator SEM together with a novel searching
strategy, we are able to solve some of the problems. This paper gives a summary
of the experimental results and a brief description of the search method.

2 Preliminaries

2.1 Definitions

Firstly, let us recall some notations:

Definition 1 (Quasigroup). A quasigroup is an ordered pair (Q,⊕), where Q

is a set and ⊕ is a binary operation on Q such that the equations a ⊕ x = b and
y ⊕ a = b are uniquely solvable for every pair of elements a, b in Q.

For a finite set Q, the order of the quasigroup (Q,⊕) is denoted as |Q|.
A quasigroup (Q, ·) is idempotent if the identity x · x = x (briefly x2 = x)

holds for all x in Q. We denote an idempotent quasigroup of order n as IQ(n).
Two idempotent quasigroups (Q,⊕) and (Q, ·) are said to be disjoint if for

any x, y ∈ Q, x ⊕ y
= x · y whenever x
= y.

Definition 2 (Large Set). A collection of idempotent quasigroups (Q,⊕1),
(Q,⊕2), . . ., (Q,⊕n−2), where n = |Q|, is called a large set if any two of the
idempotent quasigroups are disjoint.

A large set of idempotent quasigroups of order n is denoted by LIQ(n).

Definition 3 (Steiner Pentagon Quasigroup). A quasigroup of order n

is called a Steiner pentagon quasigroup if it satisfies the identities {x2 = x,
(yx)x = y, x(yx) = y(xy)}, denoted by SPQ(n).

Obviously a SPQ(n) is a particular kind of IQ(n). A large set of Steiner pentagon
quasigroups of order n is denoted by LSPQ(n).

2.2 The Problems

The existence of LIQ(n) has already been established by Teirlinck and Lindner
[9], and Chang [1]. In [1], Chang concluded that there exists an LIQ(n) for any
n ≥ 3 with the exception n = 6. However, for IQs with certain identities, the
spectrum of large sets has not been explored extensively so far. Generally there
are two classes of IQs with which we are concerned in the paper. The first class
includes 7 kinds of idempotent quasigroups whose existence has been studied
systematically. These quasigroups satisfy following identities, respectively:

1. xy · yx = x Schröder quasigroup
2. yx · xy = x Stein’s third law
3. (xy · y)y = x C3-quasigroup
4. x · xy = yx Stein’s first law; Stein quasigroup
5. (yx · y)y = x

Computer Search for Large Sets of Idempotent Quasigroups 351

6. yx · y = x · yx Stein’s second law
7. xy · y = x · xy Schröder’s first law

Any short conjugate-orthogonal identity, if nontrivial, is conjugate-equivalent
to one of them[2]. The large set of idempotent quasigroups satisfying property
(i) of order n is denoted by LIQ(i)(n). Since for some orders, there is no IQ,
Lie Zhu [14] summarized the open cases in the following list. They are of the
moderate orders, therefore may be suitable for computer search.

Table 1. Open Cases for LIQ of Moderate Sizes

1. LIQ(1)(8) LIQ(1)(12) LIQ(1)(13)

2. LIQ(2)(5) LIQ(2)(9) LIQ(2)(12)

3. LIQ(3)(4) LIQ(3)(7) LIQ(3)(10) LIQ(3)(13)

4. LIQ(4)(4) LIQ(4)(5) LIQ(4)(9) LIQ(4)(11)

5. LIQ(5)(5) LIQ(5)(7) LIQ(5)(8) LIQ(5)(11)

6. LIQ(6)(5) LIQ(6)(9) LIQ(6)(13)

7. LIQ(7)(8) LIQ(7)(9) LIQ(7)(13)

The second class of IQs is SPQ, which we already mentioned. It is known
[6,13] that the spectrum for Steiner pentagon quasigroups is precisely the set of
all positive integers n ≡ 1 or 5 (mod 10), except for n = 15. Zhu pointed out
that the smallest unknown order for LSPQ is 11.

3 Search for LIQs of Small Orders

SEM is a general-purpose search program for finding finite models. It accepts a
set of first order formulae as input and tries to find one or a specified number of
models. The size of the model should be given by the user. Since the search is
exhaustive, when the program terminates without finding any model, it means
that there is no model of the given size.

With the help of SEM, we are able to perform the search for LIQ(i)(n).
Without loss of generality, we assume the domain Q to be the set {0,1,. . . ,n−1}.
A quasigroup is actually a function f : Q × Q �→ Q satisfying the constraints

∀x∀y∀z(f(x, y) = f(x, z) → y = z)

and
∀x∀y∀z(f(x, y) = f(z, y) → x = z)

Hence to find a large set of quasigroups with some identity is to determine n−2
such functions, namely f1, f2, . . . , fn−2, with extra constraint of the identity, and
what’s more, the disjoint constraints:

∀x∀y(fi(x, y) = fj(x, y) → x = y)

352 F. Ma and J. Zhang

where i
= j. All of these constraints, together with the functions, form the input
file for SEM.

We completed all the searches for LIQ(i)(n)s with n no more than 8. The
experiments were performed on an Intel 1.86GHZ 2CPU PC with Fedora 7 OS.
The results are listed in Table 2. For each of the order 8 cases, the execution time
of SEM ranges from 3 seconds to 3 minutes; for all other cases, the execution
time is much less than a second. For each case where there is no LIQ, we further
obtained the maximum number of disjoint quasigroups, denoted by D(i)(n),
which is also useful in mathematics. When D(i)(n) = 1, there are no disjoint
IQ(i)(n)s while IQ(i)(n)s do exist. We have used Mace4 [7] to double check the
results.

Table 2. Search Results for LIQ(i)(n)s with n ≤ 8

Identity i Order n Existence of LIQ D(i)(n)

1 8 YES -

2 5 NO 2

3 4 YES -
7 NO 2

4 4 YES -
5 NO 1

5 5 NO 1
7 NO 1
8 NO 3

6 5 NO 2

7 8 YES -

4 Search for LSPQ(11)

Intuitively, it seems infeasible to complete the computer search for LSPQ(11)
using the direct method. The highest order of LSPQ(n) that has been completed
by SEM is 10, but for order 11 it is much more difficult. Our experience is that,
even searching for a partial model of 4 disjoint SPQ(11)s would take as long as
4 hours without any result. Nevertheless, via a tactical utilization of SEM, we
are able to conclude the non-existence of LSPQ(11). The effectiveness of our
approach resides essentially in two strategies:

1. Constraint weakening.
2. Isomorphism elimination.

We know a permutation of a Domain Q is a one to one mapping (bijection)
from Q onto itself. Let us denote a first order theory, i.e., a set of first order
formulae by Σ. For two models M1 and M2 of Σ on Q, if there exists a permu-
tation P that maps one of them to the other, then M1 and M2 are isomorphic.

Computer Search for Large Sets of Idempotent Quasigroups 353

Lemma 1. Given a first order theory Σ and a finite domain Q. If there is no
element in Q appearing in Σ as a constant, then for any model M of Σ on Q and
any permutation P on Q, the new interpretation P (M) obtained by performing
P on M is also a model of Σ on Q.

The lemma is straightforward since the assumption guarantees the interchange-
ablity of all elements in Q. Consequently, we have the following theorem which
serves as the foundation in our approach:

Theorem 1. Let Sn be the set of non-isomorphic SPQ(n)s. An LSPQ(n), if
there exists any, is isomorphic to an LSPQ(n) containing at least one SPQ(n)
in Sn.

Proof. First of all let us represent all the constraints for LSPQ(n) by first order
formulae and collect them in the set ΣLSPQ(n). ΣLSPQ(n) should be of the
following form:

ΣLSPQ(n) = {
∧

1≤i≤n−2

∀x∀y∀z(fi(x, y) = fi(x, z) → y = z),

∧

1≤i≤n−2

∀x∀y∀z(fi(x, y) = fi(z, y) → x = z),

∧

1≤i≤n−2

∀xfi(x, x) = x,

∧

1≤i≤n−2

∀x∀yfi(fi(y, x), x) = y,

∧

1≤i≤n−2

∀x∀yfi(x, fi(y, x)) = fi(y, fi(x, y)),

∧

1≤i<j≤n−2

∀x∀y(fi(x, y) = fj(x, y) → x = y)}

Apparently ΣLSPQ(n) is a first order theory with no constant appearing in its
formulae. Suppose there exists an LSPQ(n), namely L. So L is a model of
ΣLSPQ(n). Arbitrarily choose an SPQ(n) from L, it must be isomorphic to
some SPQ(n) A in Sn since all non-isomorphic SPQ(n)s are included in Sn.
Denote the permutation which maps the chosen one in L to A by P . Perform
the permutation P on L and denote the result by P (L), by lemma 1 P (L) is
a model of ΣLSPQ(n), i.e., an LSPQ(n). What’s more, A is contained in P (L)
because it is obtained by performing P on the originally chosen SPQ(n), which
is part of L. By definition L is isomorphic to P (L), hence the theorem holds. ��

Furthermore, it’s observed that a large set of idempotent quasigroups has the
following property:

Lemma 2. Suppose an LIQ(n)={(Q,⊕1), (Q,⊕2), . . ., (Q,⊕n−2)}, where n =
|Q|. For any x, y ∈ Q, if x
= y, then the collection of x ⊕i y is exactly the set Q

excluding x and y, or formally, {x ⊕i y|1 ≤ i ≤ n − 2}=Q-{x,y}.

354 F. Ma and J. Zhang

Proof. For any 1 ≤ i ≤ n − 2, from the idempotent identity we have x ⊕i x = x

and y ⊕i y = y. Since (Q,⊕i) is a quasigroup and x
= y, we have x ⊕i y
= x,
otherwise the equation x ⊕i z = x with the unknown z is not uniquely solvable.
Similarly, we get x ⊕i y
= y. Therefore, x ⊕i y ∈ Q − {x, y}. Also, the disjoint
property of large set implies that for any i
= j, we have x ⊕i y
= x ⊕j y. So
the cardinality of {x ⊕i y|1 ≤ i ≤ n − 2} is n − 2, equaling to the cardinality of
Q-{x,y}. The two sets are equal. ��

Now we explain the basic idea of our method. Suppose there are m non-
isomorphic SPQ(n)s in total, namely A1, A2, . . . , Am. By Theorem 1 we know
that LSPQ(n) exists if and only if there is an LSPQ(n) containing at least one
such Ai. Therefore without losing any non-isomorphic solution, we can safely
divide the search space into m (maybe intersecting) sub-spaces, each of which
corresponds to an Ai ∈ LSPQ(n). Now let’s consider any of the m situations.
While searching in the ith sub-space, the first SPQ(n) is prefixed to be Ai.
We are to determine the multiplication tables of the rest n − 3 SPQ(n)s in the
large set. We denote them by f i

2, f
i
3, . . . , f

i
n−2. For these n − 3 SPQs, it doesn’t

make any difference how they are ordered. We can choose a cell which is not on
the diagonal, for example, cell(0, 1), and sort them by the cell value. Lemma 2
implies that any f i

j(0, 1) and f i
k(0, 1) are different for j
= k, thus we can fix

f i
2(0, 1) < f i

3(0, 1) < . . . < f i
n−2(0, 1) (1)

and (n − 3)! − 1 isomorphisms are then eliminated. Also, if n − 3 SPQ(n)s in
the large set are determined, the candidate for the last one is unique and can be
worked out immediately. This is because by Lemma 2, there is only one candidate
value left for each cell(x, y) where x
= y, and the idempotent property forces each
cell(x, x) to be assigned x. What we need to do is to check if the candidate satisfies
the identities of SPQ and it is quite an easy job. So the task is reduced to finding
n − 4 disjoint SPQ(n)s which are all disjoint with Ai, and satisfying (1).

Although the problem is much simplified, it remains intractable for the open
case of order 11. We once tried one such subcase. SEM did not complete the
search after running a week, and finally the process was killed. However, it is
noticed that search for only one SPQ(11) that is disjoint with Ai could be
completed quite fast by SEM and it seems feasible to find all the solutions. If we
weaken the disjoint constraints for f i

j to be disjoint with Ai only, we can obtain
the candidate set for f i

j . Once all the candidates for f i
2, . . . , f

i
n−3 are found out,

we can check if a large set can be formed.
Our method can be summarized as the following procedure:

1. Find the set of all non-isomorphic SPQ(n)s: Sn = {A1, A2, . . . , Am}. Cur-
rently we use SEMD [5].

2. For each Ai in Sn, do the following:
2a Fix f i

1 to be Ai. For each f i
j (2 ≤ j ≤ n − 3) use SEM to find all the

candidates satisfying the following constraints:
i. The SPQ(n) identities.
ii. f i

j(0,1) equals to the (j−1)th smallest value in the set Q−{0, 1, f i
1(0,1)}.

Computer Search for Large Sets of Idempotent Quasigroups 355

iii. Disjoint with f i
1.

and denote the candidate set by Ci
j .

2b Call the function SCAN(i,n) to find all the sets of n− 4 SPQs which are
disjoint with each other. If there are no such SPQs, try next Ai.

2c For each set of the disjoint SPQs calculate the possible solution for f i
n−2

and check if it is an SPQ(n). If so, an LSPQ(n) is discovered. If all the
sets fail to produce an LSPQ(n), try next Ai.

The program SCAN(i,n) is illustrated in Figure 1. It is a depth-first search
program to find all combinations of n − 4 disjoint SPQs. The n − 4 SPQs are
from Ci

2, C
i
3, . . . , C

i
n−3 separately. The program works by scanning the SPQs in

Ci
j (2 ≤ j ≤ n − 3) in sequence so as to pair up disjoint SPQs. The variable cur

is the current search depth, i.e, the number of the candidate set being scanned.
The current search path is kept in the array pnt. C i j is the array to store the
SPQs in the candidate set Ci

j and size[j] is the cardinality of Ci
j . Initially cur

is set to 3 and pnt[j] is set to 1.
If all SPQ(n)s in Sn have been tried and no LSPQ(n) is found, the process

terminates. Since the process is exhaustive, the non-existence of LSPQ(n) can
be established.

bool SCAN(i,n){
sol_num=0;
cur=3;
while(TRUE){

if(there exists some j, 1<j<cur, such that C_i_j[pnt[j]]
and C_i_cur[pnt[cur]] are not disjoint)
pnt[cur]++;

else {if(cur==n-3){
record pnt;
sol_num++;
pnt[cur]++;

}
else {cur++;

pnt[cur]=1;
}

}
while(pnt[cur]==size[cur]+1){

cur--;
if(cur<2){

if(sol_num==0) return FALSE;
return TRUE;

}
pnt[cur]++;

}
}

}

Fig. 1. The program SCAN(i,n)

356 F. Ma and J. Zhang

A1 | 0 1 2 3 4 5 6 7 8 9 10
---+---------------------------------
0 | 0 2 6 5 10 9 8 1 7 4 3
1 | 3 1 5 8 9 6 4 0 10 2 7
2 | 4 0 2 6 7 3 10 9 5 1 8
3 | 1 6 7 3 5 2 9 8 4 10 0
4 | 2 7 8 9 4 10 1 5 3 0 6
5 | 6 10 1 0 3 5 7 4 2 8 9
6 | 5 3 0 2 8 1 6 10 9 7 4
7 | 9 4 3 10 2 8 5 7 0 6 1
8 | 10 9 4 1 6 7 0 3 8 5 2
9 | 7 8 10 4 1 0 3 2 6 9 5
10 | 8 5 9 7 0 4 2 6 1 3 10

A2 | 0 1 2 3 4 5 6 7 8 9 10
---+---------------------------------
0 | 0 2 7 5 6 8 9 10 1 3 4
1 | 3 1 5 6 8 9 2 4 0 10 7
2 | 4 0 2 8 5 3 1 6 10 7 9
3 | 1 4 9 3 10 2 8 5 7 0 6
4 | 2 3 8 9 4 10 7 1 6 5 0
5 | 6 7 1 0 2 5 10 3 9 4 8
6 | 5 9 10 1 0 7 6 2 4 8 3
7 | 8 5 0 10 9 6 4 7 3 2 1
8 | 7 10 4 2 1 0 3 9 8 6 5
9 | 10 6 3 4 7 1 0 8 5 9 2

10 | 9 8 6 7 3 4 5 0 2 1 10

Fig. 2. Two non-isomorphic SPQ(11)s

Following the instructions above, we performed the search for LSPQ(11).
Firstly, there are only two non-isomorphic SPQ(11)s found by SEM, denoted by
A1 and A2 respectively. They are shown in Fig. 2.

The search for Ci
j , 1 ≤ i ≤ 2, 2 ≤ j ≤ 8 is performed on an IBM BladeCenter

with 8 2.5GHz PowerPC 970 2CPU processors. The search results are listed in
Table 3. The times are also given in seconds. From Table 3 we can see that the

Table 3. Experimental Result for Ci
j

Ci
j j: 2 3 4 5 6 7 8

i = 1 Solution Number 1055 940 980 979 1055 929 924
Running time 3593.13 3046.69 3362.07 3448.14 3590.43 3207.82 2994.13

i = 2 Solution Number 830 732 758 732 726 867 804
Running time 3614.09 2893.40 3418.53 3254.60 3374.20 3362.34 3167.44

cardinality of each set Ci
j is about 1000 and the running time doesn’t exceed one

hour in general.
For each of the two subspaces, we use the program in Fig. 1 to find 7 disjoint

SPQ(11)s from the candidate sets. After running about 1 minute on the PC, the
program returned FALSE for both cases, implying that LSPQ(11) doesn’t exist.

5 Discussion

It is interesting to notice that adding some redundant lemmas can greatly in-
fluence the running time of SEM. A remarkable evidence is the self-orthogonal
property of SPQ. An idempotent quasigroup (Q,⊕) is called self-orthogonal if

{(x ⊕ y, y ⊕ x)|x, y ∈ Q, x
= y} = {(u, v)|u, v ∈ Q, u
= v}.

The property can be represented by the conjunction of the following two first
order formulae.

∀x∀y(x
= y → f(x, y)
= f(y, x)) (2)

Computer Search for Large Sets of Idempotent Quasigroups 357

∀x∀y∀z∀w(x
= y∧z
= w∧(x
= z∨y
= w) → f(x, y)
= f(z, w)∨f(y, z)
= f(w, z))
(3)

It is known that an SPQ(n) is self-orthogonal. Formula 2 can reduce the running
time greatly in our experiments. We once tried to search for LSPQ(9) directly by
SEM. It lasted for about 10 hours and still could not give a result. By contrast,
when formula 2 is added to the input file, the search is completed within a second,
confirming the non-existence of LSPQ(9). It is also helpful to the generating
process of Ci

j , reducing the running time from almost 24 hours to less than an
hour. However, when formula 3 is also added, in both cases the search would
slow down dramatically, almost as slow as when there are no lemmas. While
short lemmas are helpful, long ones may play a negative role. This issue may
deserve further investigation.

Although the method in section 4 is designed for LSPQ, it can be generalized
to LIQi(n)s or any other LIQs with similar identities. In addition, it can be
easily modified to find out the maximum disjoint IQs if necessary. The basic
idea is also suggestive to the automated search for other algebraic structures. We
have just applied the method to LIQ2(9), LIQ4(9), LIQ6(9) and LIQ7(9) and
established their nonexistences. It is hopeful that more open problems regarding
the existence of large set can be solved in the future.

6 Conclusion

Searching for large set of idempotent quasigroups (LIQs) presents new challenges
to computer scientists and mathematicians. The search space is much larger in
general. This paper presents some search results and techniques which appear
to be effective on the problem. The preliminary results are quite interesting to
Lie Zhu and provided useful information for his research.

To reduce the search time, we have used three techniques:(1) adding redundant
formulae to the original set of constraints; (2) dividing the set of constraints into
several subsets, and constructing a large set gradually by considering various
pairs of quasigroups; (3) employing the symmetry among the quasigroups in the
large set, in addition to the symmetry among domain elements.

While the above techniques have helped us to obtain some results on previ-
ously open cases, we are also developing other techniques and investigating more
difficult cases. Moreover, we will use other model finding tools in the future.

Acknowledgement

The authors are very thankful to Lie Zhu for his introduction to the problems.

References

1. Chang, Y.: The Spectrum for Large Sets of Idempotent Quasigroups. Journal of
Combinatorial Designs (2000)

2. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs, 2nd edn. CRC
Press, Boca Raton (2007)

358 F. Ma and J. Zhang

3. Dubois, O., Dequen, G.: The Non-existence of (3,1,2)-Conjugate Orthogonal Idem-
potent Latin Square of Order 10. In: Proc. of the 7th International Conference on
Principles and Practice of Constraint Programming (2001)

4. Fujita, M., Slaney, J.K., Bennett, F.: Automatic Generation of Some Results in
Finite Algebra. In: Proc. IJCAI, pp. 52–59 (1993)

5. Jia, X., Zhang, J.: A Powerful Technique to Eliminate Isomorphism in Finite Model
Search. In: Proc. IJCAR, pp. 318–331 (2006)

6. Lindner, C.C., Stinson, D.R.: Steiner Pentagon Systems. Discrete Math. 52, 67–74
(1984)

7. McCune, W.: Mace4 Reference Manual and Guide. Technical Memorandum 264,
Argonne National Laboratory, Argonne, IL, USA (2003)

8. Slaney, J., Fujita, M., Stickel, M.: Automated Reasoning and Exhaustive Search:
Quasigroup Existence Problems. Computers and Mathematics with Applica-
tions 29, 115–132 (1995)

9. Teirlinck, L., Lindner, C.C.: The Construction of Large Sets of Idempotent Quasi-
groups. Eur. J. of Combin. 9, 83–89 (1988)

10. Zhang, H.: SATO: An Efficient Propositional Prover. In: Proc. of CADE, pp. 272–
275 (1997)

11. Zhang, H., Stickel, M.: Implementing the Davis-Putnam Method. Journal of Au-
tomated Reasoning 24(1/2), 277–296 (2000)

12. Zhang, J., Zhang, H.: SEM: a System for Enumerating Models. In: Proc. of Inter-
national Joint Conference on Artificial Intelligence, pp. 11–18 (1995)

13. Zhu, L.: Large Set Problems for Various Idempotent Quasigroups (July 2006)
14. Zhu, L.: Personal Communication (September 2007)

Author Index

Ahmad, R.R. 163
Aris, Nor’aini 87
Attili, Basem S. 169
Awang Kechil, Seripah 213

Bretto, Alain 139

Chen, Liangyu 57
Chionh, Eng-Wee 293
Choi, Hyeong In 1

Farouki, Rida T. 1
Fujino, Seiji 108

Gao, Xiao-Shan 246, 307
Gillibert, Luc 139
Gonthier, Georges 333
Gunawan, H. 151

Han, Chang Yong 1
Hashemi, Amir 97
Hashim, Ishak 213

Inoue, Shutaro 334
Ishak, Anuar 224
Iwami, Maki 323

Jaulin, Cerasela 139
Jeffrey, D.J. 22

Kako, Fujio 278
Kredel, Heinz 121

Laget, Bernard 139
Li, Banghe 236
Li, Jia 246
Li, Zhibin 188
Liang, S. 22

Lim, L.H. 163
Liu, Yinping 188

Ma, Feifei 349
Minimair, Manfred 72
Moon, Hwan Pyo 1
Moroz, Guillaume 263

Nagai, Akira 334
Nahar Ahmad, Shamsatun 87
Nazar, Roslinda 224

Patra, Sougata 179
Pop, Ioan 224
Pranolo, F. 151

Qian, Haifeng 188

Rambely, A.S. 163
Rusyaman, E. 151

Safey El Din, Mohab 42
Sarkar, Suvra 179
Sasaki, Tateaki 278
Sato, Yosuke 334
Sekigawa, Hiroshi 32
Shemyakova, Ekaterina 199

Thuthu, Moe 108

Wang, Dingkang 236
Wang, Xiaoyun 322
Winkler, Franz 199

Zeng, Zhenbing 57
Zhang, Gui-Lin 307
Zhang, Jian 349

	Title Page
	Preface
	Organization
	Table of Contents
	Computing the Minkowski Value of the Exponential Function over a Complex Disk
	Introduction
	Random–Coefficient Differential Equation
	Minkowski Exponential of a Real Interval
	Exponential Image of a Circular Disk
	Monomial Minkowski Exponential
	Monte Carlo Experiments
	Closure
	References

	Unconstrained Parametric Minimization of a Polynomial: Approximate and Exact
	Introduction
	Algorithm for Lower Bound
	Examples
	The Minimum of a Quartic Polynomial
	Application to Integration
	References

	The Nearest Real Polynomial with a Real Multiple Zero in a Given Real Interval
	Introduction
	Theoretical Background
	Existence of a Nearest Polynomial
	Main Theorem

	Computation Methods
	First Case
	Second Case
	Computational Complexity
	Examples

	Conclusion
	References

	Practical and Theoretical Issues for the Computation of Generalized Critical Values of a Polynomial Mapping
	Introduction
	Preliminaries
	Main Results and Algorithms
	Geometric Results
	Algorithms and Complexity

	Practical Results
	Description of the Test-Suite
	Practical Results

	References

	Which Symmetric Homogeneous Polynomials Can Be Proved Positive Semi-definite by Difference Substitution Method?
	Introduction
	Notation
	D-PSD Cone
	An Example for DevSubExp
	Relation of C-PSD and D-PSD
	Extension of D-PSD Cone
	Conclusions
	References

	Basis-Independent Polynomial Division Algorithm Applied to Division in Lagrange and Bernstein Basis
	Introduction
	Basis-Independent Framework for Polynomial Division
	Motivating Example
	Definition of Polynomial Division Algorithm
	Complexity of the Division Algorithm
	Correctness of the Division Algorithm

	Division in Lagrange Basis
	Definition of Basic Operators
	Complexity
	Correctness

	Division in Bernstein Basis
	Definition of Basic Operators
	Complexity
	Correctness

	Conclusion and Future Directions
	References

	Computing the Greatest Common Divisor of Polynomials Using the Comrade Matrix
	Introduction
	General Procedure and Related Work
	The GCD of Generalized Polynomials
	Computing Time Analysis
	Construction of the Comrade Matrix
	The Coefficient Matrix
	Concluding Remarks and Further Work
	References

	Efficient Algorithms for Computing N\oether Normalization
	Introduction
	$N\oether$ Position Test
	Modular Noether Position Test
	Putting an Ideal in Noether Position
	Experiments and Remarks
	Conclusion
	References

	Stability of GPBiCG AR Method Based on Minimization of Associate Residual
	Introduction
	GPBi-CG and GPBiCG AR Methods
	Preconditioned GPBi-CG and GPBiCG AR Methods

	NumericalExperiments
	Non Preconditioned GPBiCG AR and GPBi-CG Methods
	Preconditioned GPBiCG AR and GPBi-CG Methods

	Conclusions and Future Work
	References

	Evaluation of a Java Computer Algebra System
	Introduction
	Related Work
	Outline

	Introduction to JAS
	Using the JAS Library
	JAS Class Overview

	Evaluation
	Interfaces as Types
	Generics and Inheritance
	Dependent Types
	Method Semantics
	Recursive Types
	Factory Pattern
	Code Reuse
	Performance
	Applications
	Parallelization
	Libraries
	Java Environment

	Conclusions
	References

	A New Property of Hamming Graphs and Mesh of d-ary Trees
	Introduction
	Preliminaries
	Graph Definitions
	Group Definitions

	Introduction to G-Graphs
	Algorithmic Procedure
	Complexity and Example

	Hamming Graphs Are G-Graphs
	Meshof d-ary Trees
	References

	An Interpolation Method That Minimizes an Energy Integral of Fractional Order
	Introduction
	The Problem and Its Solution
	The Procedure to Obtain the Solution
	What Happens When $0\le\alpha\le\frac{1}{2}$
	References

	Solving Biomechanical Model Using Third-Order Runge-Kutta Methods
	Introduction
	The Biomechanics Model of a Cyclist
	Numerical Solution
	Conclusion
	References

	An Efficient Fourth Order Implicit Runge-Kutta Algorithm for Second Order Systems
	Introduction
	The Implicit Runge-Kutta Method
	The Algorithm
	Numerical Experimentation
	Conclusions
	References

	Laplace Equation Inside a Cylinder: Computational Analysis and Asymptotic Behavior of the Solution
	Introduction
	Solution to the Boundary Value Problem
	Simulation and Analysis Results
	Conclusion
	References

	A Method and Its Implementation for Constructing B$\"{a}$cklund Transformations to Nonlinear Evolution Equations
	Introduction
	An Algorithm for B$\"{a}$cklund Transformation
	The First Case: Differential Form
	The Second Case: Differential-Free Form

	The Maple Package AutoBT
	The Application of the Package AutoBT
	Summary
	References

	On the Invariant Properties of Hyperbolic Bivariate Third-Order Linear Partial Differential Operators
	Introduction
	Definitions and Notations
	Factorization Via Invariants
	Factorization Type $(p^X + q^Y)(XY)$
	Factorization Type (X)(Y S)
	Factorization Types $(p^X + q^Y)(X)(Y)$ and $(X)(p^X + q^Y)(Y)$
	Formal Adjoint
	SymbolofConstantCoefficients
	Conclusion
	References

	Symbolic Solution to Magnetohydrodynamic Hiemenz Flow in Porous Media
	Introduction
	Boundary Layer Equations of MHD Hiemenz Flow
	Solution Procedure
	Results and Discussion
	Conclusions
	References

	Local Similarity Solutions for Laminar BoundaryLayer Flow a long a Moving Cylinder in a Parallel Stream
	Introduction
	Problem Formulation
	Solution Procedure
	Local Similarity Assumption
	Finite-Difference Method
	Newton’s Method
	Block-Elimination Method

	Results and Discussion
	References

	An Algorithm for Transforming Regular Chain into Normal Chain
	Introduction
	Preliminaries
	An Algorithm to Compute the Inverse of a Polynomial Modulo an Ideal
	Transforming Regular Chain into Normal Chain
	Examples
	Conclusions
	References

	A Modified Van der Waerden Algorithm to Decompose Algebraic Varieties and Zero-Dimensional Radical Ideals
	Introduction
	Preliminaries
	Outline of the VDW Decomposition Algorithm
	Irredundant Decomposition
	Decomposing Zero-Dimensional Radical Ideals
	Decomposing Zero-Dimensional Radical Ideals Using VDW Algorithm
	Decomposing Zero-Dimensional Radical Ideals Using Macaulay Resultant

	Conclusions
	References

	Regular Decompositions
	Introduction
	Regular Set
	Applications
	Algorithm
	Main Idea of the Algorithm
	Recursion Step
	Complete Algorithm
	Examples

	Optimizations
	Pruning the Tree (I)
	Degree ordering
	Fraction Field
	Zero-Dimensional Case
	Pruning the Tree (II)

	PracticalBehaviour
	References

	Floating-Point Gr¨obner Basis Computation with Ill-conditionedness Estimation
	Introduction
	Instability Due to Self-reduction
	Clones and Self-reduction Caused by Small Leading Terms
	Self-reduction in Three Other Cases

	Analysis of Self-reductions Given in Sect. 2
	Analysis of Self-reduction by Double Clones
	Estimation of Amount of Main-Term Cancellation

	New Method of Stabilization
	Supporting Theorem
	Effective Floating-Point Numbers
	Description of New Method

	Implementation Details
	Representation of Clones
	Reducer Subtraction
	Estimating the Amount of Intrinsic Cancellation

	Concluding Remarks
	References

	The Maximality of the Dixon Matrix on Corner-Cut Monomial Supports
	Introduction
	The Structure of Cornet-Cut Monomial Supports
	Rectangular and Arbitrary Lattice Sets
	Bidegree Hulls
	Exterior Points and Exposed Points
	Presentation Convention
	An Example

	TheDixonConstruction
	The Dixon Polynomial P(S) for a Support S
	The Dixon Matrix D(S) for a Support S
	The Row Support R(S) and Column Support C(S) for the Dixon Matrix D(S)
	An Example

	Exterior Points Simplify the Dixon Matrix
	Translating Points of S to Points of R(S) and C(S)
	Exterior Points Eliminate Rows and Columns
	Exterior Points Eliminate Brackets
	Examples

	Excess Degrees and Quotient Dixon Resultants
	Supports with Three or Fewer Exposed Points Preserve Maximality
	All Possible Exposed Points
	Columns Indexed by Exposed Points in the Column Support
	Corresponding Row Indices
	Proving the Maximality of D(S)
	Provision for Degeneracies

	Conclusions
	References

	Properties of Ascending Chains for Partial Difference Polynomial Systems
	Introduction
	Preliminaries
	Difference Polynomials and Difference Chains
	Invertibility of Algebraic Polynomials

	Coherent Chains
	Prolongation of Chains
	Coherent Chains

	Regular Chains
	Characteristic Set of Reflexive Prime Difference Ideals
	Algorithms of Zero Decomposition
	Conclusion
	References

	Some Mathematical Problems in Cryptanalysis
	A Reduction Attack on Algebraic Surface Public-Key Cryptosystems
	Introduction
	Algebraic Surface Public-Key Cryptosystem [1, 3, 4]
	Attack on Algebraic Surface Public-Key Cryptosystem under the Assumption [5]
	Attack on Algebraic Surface Public-Key Cryptosystem
	Attack by Straightforward Generalization in $IF_p^(t) [x, y]$
	Attack by Utilizing Gr$\"{o}$bner Base Techniques in $IF_p^[x, y, t,A]$

	Conclusion
	References

	The Four Colour Theorem: Engineering of a Formal Proof
	On the Computation of Elimination Ideals of Boolean Polynomial Rings
	Introduction
	Boolean Polynomial Ring
	Boolean Gr$\"{o}$bner Bases
	Comprehensive Boolean Gr$\"{o}$bner Bases
	New Algorithm for Elimination Ideals
	Conclusions and Remarks
	References

	Computer Search for Large Sets of Idempotent Quasigroups
	Introduction
	Preliminaries
	Definitions
	The Problems

	Search for LIQs of Small Orders
	SearchforLSPQ(11)
	Discussion
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

